Neurotransmitter Modulation of the Stomatogastric Ganglion of Decapod Crustaceans

  • Eve Marder
  • Scott L. Hooper

Abstract

A large number of substances including amines, amino acids, and peptides have been assigned neurotransmitter roles in both vertebrate and invertebrate nervous systems. Although explanations for this large number of neurotransmitters have been proposed, it is still far from understood how all these neurotransmitter systems function and interact within the nervous system. Some clues to the answer to this question should come from current work on the neurotransmitter systems involved in the modulation of the output of a “relatively simple system,” the stomatogastric ganglion (STG) of decapod crustaceans.

Keywords

Central Pattern Generator Decapod Crustacean Spiny Lobster Pyloric Dilator Stomatogastric Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W. W., 1980, Synaptic mechanisms generating nonspiking network oscillations in the stomatogastric ganglion of the lobster, Panulirus interruptus, PhD. dissertation, University of Oregon.Google Scholar
  2. Anderson, W. W., and Barker, D. L., 1981, Synaptic mechanisms that generate network oscillations in the absence of discrete postsynaptic potentials, J. Exp. Zool. 216:187–191.PubMedCrossRefGoogle Scholar
  3. Barker, D. L., Kushner, P. D., and Hooper, N. K., 1979, Synthesis of dopamine and octopamine in the crustacean stomatogastric nervous system, Brain Res. 161:99–113.PubMedCrossRefGoogle Scholar
  4. Beltz, B. S., Eisen, J. S., Flamm, R., Harris-Warrick, R. M., Hooper, S. L., and Marder, E., 1984, Serotonergic innervation and modulation of the stomatogastric ganglion of three decapod crustaceans (Homarus americanus, Cancer irroratus and Panulirus interruptus), J. Exp. Biol. 109:35–54.PubMedGoogle Scholar
  5. Claiborne, B. J., and Selverston, A. I., 1984a, Histamine as a neurotransmitter in the stomatogastric nervous system of the spiny lobster, J. Neurosci. 4:708–721.PubMedGoogle Scholar
  6. Claiborne, B. J., and Selverston, A. I., 1984b, Localization of stomatogastric IV neuron cell bodies in lobster brain, J. Comp. Physiol. 154:27–32.CrossRefGoogle Scholar
  7. Cooke, I. M., and Sullivan, R. E., 1982, Hormones and neurosecretion, in: The Biology of Crustacea, Volume 3 (H. L. Atwood and D. C. Sandeman, eds.), Academic Press, New York, pp. 205–290.CrossRefGoogle Scholar
  8. Dando, M. R., and Selverston, A. I., 1972, Command fibers from the supraesophageal to the stomatogastric ganglion in Panulirus argus, J. Comp. Physiol. 78:138–175.CrossRefGoogle Scholar
  9. Dickinson, P. S., and Nagy, F., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones, J. Exp. Biol. 105:59–82.PubMedGoogle Scholar
  10. Eisen, J. S., and Marder, E., 1982, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons, J. Neurophysiol. 48:1392–1415.PubMedGoogle Scholar
  11. Eisen, J. S., and Marder, E., 1984, A mechanism for the production of phase shifts in a pattern generator, J. Neurophysiol. 51:1374–1394.Google Scholar
  12. Flamm, R. E. and Harris-Warrick, R. M., 1984, Neuronal targets of dopamine, octopamine, and serotonin in the pyloric central pattern generator of the stomatogastric ganglion of the lobster, Panulirus interruptus, Soc. Neurosci. Abst. 10:149.Google Scholar
  13. Goldstone, M., and Cooke, I., 1971, Histochemical localization of monoamines in the crab central nervous system, Z. Zellforsch. Mikrosk. Anat. 116:7–19.CrossRefGoogle Scholar
  14. Harris-Warrick, R. M. and Flamm, R. E., 1984, Aminergic modulation of the pyloric rhythm in the stomatogastric ganglion of Panulirus interruptus, Soc. Neurosci. Abst. 10:149.Google Scholar
  15. Hartline, D. K., 1979, Pattern generation in the lobster Panulirus stomatogastric ganglion. II. Pyloric network simulation, Biol. Cybern. 33:223–236.PubMedCrossRefGoogle Scholar
  16. Hartline, D. K., and Gassie, D. V., 1979, Pattern generation in the lobster Panulirus stomatogastric ganglion. I. Pyloric neuron kinetics and synaptic interactions, Biol. Cybern. 33:209–222.PubMedCrossRefGoogle Scholar
  17. Hooper, S. L. and Marder, E., 1984a, The physiological effects of proctolin and FMRFamide on the stomatogastric ganglion of Panulirus interruptus and Cancer irroratus, Soc. Neurosci. Abst. 10:148.Google Scholar
  18. Hooper, S. L., and Marder, E., 1984b, Modulation of a central pattern generator by two neuropeptides, proctolin and FMRFamide Brain Res. 305:186–191.PubMedCrossRefGoogle Scholar
  19. King, D. G., 1976, Organization of crustacean neuropil. I. Patterns of synaptic connections in lobster stomatogastric ganglion J. Neurocytol. 5:207–237.PubMedCrossRefGoogle Scholar
  20. Kushner, P. D., and Barker D. L., 1983, A neurochemical description of the dopaminergic innervation of the stomatogastric ganglion of the spiny lobster, J. Neurobiol. 14:17–28.PubMedCrossRefGoogle Scholar
  21. Kushner, P. D., and Maynard, E. A., 1977, Localization of monoamine fluorescence in the stomatogastric nervous system of lobsters, Brain Res. 129:13–28.PubMedCrossRefGoogle Scholar
  22. Lingle, C. J., 1980, Sensitivity of decapod foregut muscles to acetylcholine and glutamate, J. Comp. Physiol. 138:187–199.CrossRefGoogle Scholar
  23. Marder, E., 1974, Acetylcholine as an excitatory neuromuscular transmitter in the stomatogastric system of the lobster, Nature (London) 251:730–731.CrossRefGoogle Scholar
  24. Marder, E., 1976, Cholinergic motor neurones in the stomatogastric system of the lobster, J. Physiol. 257:63–86.PubMedGoogle Scholar
  25. Marder, E., and Eisen, J. S., 1984a, Transmitter identification of pyloric neurons: Electrically coupled neurons use different transmitters, J. Neurophysiol 51:1345–1361.PubMedGoogle Scholar
  26. Marder, E., and Eisen, J. S., 1984b, Electrically coupled pacemaker neurons respond differently to the same physiological inputs and neurotransmitters, J. Neurophysiol. 51:1362–1373.PubMedGoogle Scholar
  27. Marder, E., and Paupardin-Tritsch, D., 1978, The pharmacological properties of some crustacean neuronal acetylcholine, 7-aminobutyric acid, and 1-glutamate responses, J. Physiol. 280:213–236.PubMedGoogle Scholar
  28. Marder, E., Hooper, S. L., and Siwicki, K. K., 1984, Distribution of Proctolin-like and FMRF-like immunoreactivity in the stomatogastric system of decapod crustacea, Soc. Neurosci. Abstr. 10:688.Google Scholar
  29. Maynard, D. M., 1972, Simpler networks, Ann. NY. Acad. Sci. 193:59–72.PubMedCrossRefGoogle Scholar
  30. Maynard, D. M., and Selverston, A. I., 1975, Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system, J. Comp. Physiol. 100:161–182.CrossRefGoogle Scholar
  31. Maynard, E. A., 1971, Electron microscopy of stomatogastric ganglion in the lobster, Homarus americanus, Tissue Cell 3:137–160.CrossRefGoogle Scholar
  32. Miller, J. P., and Selverston, A. I., 1979, Rapid killing of single neurons by irradiation of intracellularly injected dye, Science 206:702–704.PubMedCrossRefGoogle Scholar
  33. Miller, J. P., and Selverston, A. I., 1982a, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons, J. Neurophysiol. 48:1378–1391.PubMedGoogle Scholar
  34. Miller, J. P., and Selverston, A. I., 1982b, Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of the pyloric system, J. Neurophysiol. 48:1416–1432.PubMedGoogle Scholar
  35. Moulins, M., and Cournil, I., 1982, All-or-none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator, J. Neurobiol. 13:447–458.PubMedCrossRefGoogle Scholar
  36. Mulloney, B., and Selverston, A. I., 1974, Organization of the stomatogastric ganglion in the spiny lobster. I. Neurons driving the lateral teeth, J. Comp. Physiol. 91:1–32.CrossRefGoogle Scholar
  37. Nagy, F., and Dickinson, P. S., 1983, Control of a central pattern generator by an identified interneurone in crustacea. I. Modulation of the pyloric motor output, J. Exp. Biol. 105:33–58.PubMedGoogle Scholar
  38. Nagy, F., Benson, J. A., and Moulins, M., 1984, Cholinergic activation of burst generating oscillations mediated by opening of Ca2+ channels in lobster pyloric neurons, Soc. Neurosci. Abst. 10:148.Google Scholar
  39. Raper, J. A., 1979, Nonimpulse mediated synaptic transmission during the generation of a cyclic motor program, Science 205:304–306.PubMedCrossRefGoogle Scholar
  40. Rezer, E., and Moulins, M., 1983, Expression of the crustacean pyloric pattern generator in the intact animal, J. Comp. Physiol. 153:17–28.CrossRefGoogle Scholar
  41. Russell, D. F., 1976, Rhythmic excitatory inputs to the lobster stomatogastric ganglion, Brain Res. 101:582–588.PubMedCrossRefGoogle Scholar
  42. Russell, D. F., 1979, CNS Control of pattern generation in the lobster stomatogastric ganglion, Brain Res. 177:598–602.PubMedCrossRefGoogle Scholar
  43. Russell, D. R., and Hartline, D. K., 1982, Slow active potentials and bursting motor patterns in pyloric network of the lobster, Panulirus interruptus, J. Neurophysiol. 48:914–937.Google Scholar
  44. Selverston, A. I., and Miller, J. P., 1980, Mechanism underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. Pyloric system, J. Neurophysiol. 44:1102–1121.PubMedGoogle Scholar
  45. Selverston, A. I., King, D. G., Russell, D. F., and Miller, J. P., 1976, The stomatogastric nervous system: Structure and function of a small neural network, Prog. Neurobiol. 7:215–290.PubMedCrossRefGoogle Scholar
  46. Sigvardt, K. A., and Mulloney, B., 1982a, Properties of synapses made by IVN command-interneurons in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus, J. Exp. Biol. 97:153–168.Google Scholar
  47. Sigvardt, K. A., and Mulloney, B., 1982b, Properties of synapses made by IVN command-interneurons in the stomatogastric ganglion of the spiny lobster, Panulirus interruptus, J. Exp. Biol. 97:137–152.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Eve Marder
    • 1
  • Scott L. Hooper
    • 1
  1. 1.Biology DepartmentBrandeis UniversityWalthamUSA

Personalised recommendations