The Logic of Limax Learning

  • Alan Gelperin
  • J. J. Hopfield
  • D. W. Tank
Chapter

Abstract

We wish to understand the neuronal computations performed on sensory inputs that result in the categorization of those inputs, their storage as memory states, and their associative combination. Our experimental and theoretical work is focused on the neuronal computations performed on odor and taste inputs in the CNS of Limax maximus, a terrestrial mollusk convenient for behavioral, neuro-physiological, and neurochemical experiments (Gelperin, 1983). The questions posed in this specific system are designed to illuminate issues of learning and memory storage with panphyletic generality.

Keywords

Conditioned Stimulus Unconditioned Stimulus Synaptic Strength Cerebral Ganglion Command Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta-Urquidi, J., Alkon, D. L., and Neary, J. T., 1984, Ca2+-dependent protein kinase injection in a photoreceptor mimics biophysical effects of associative learning, Science 224:1254–1257.PubMedCrossRefGoogle Scholar
  2. Barry, S. R., and Gelperin, A., 1982a, Dietary choline augments blood choline and cholinergic transmission in the terrestrial mollusc, Limax maximus, J. Neurophysiol. 48:541–547.Google Scholar
  3. Barry, S. R., and Gelperin, A., 1982b, Exogenous choline augments transmission at an identified cholinergic synapse in the terrestrial mollusc Limax maximus, J. Neurophysiol. 48:431–450.Google Scholar
  4. Barry, S. R., and Gelperin, A., 1984, Acetylcholine turnover in an autoactive molluscan neuron, Cell. Molec. Neurobiol. 4:15–29.PubMedCrossRefGoogle Scholar
  5. Beltz, B., and Kravitz, E. A., 1982, Mapping of serotonin-like immunoreactivity in the lobster nervous system, J. Neurosci. 3:585–602.Google Scholar
  6. Benedeczky, I., 1977, Ultrastructure of the epithelial sensory region of the lip in the snail Helix pomatia L., Neuroscience 2:781–789.PubMedCrossRefGoogle Scholar
  7. Benjamin, P. R., 1983, Gastropod feeding: Behavioral and neural analysis of a complex multicomponent system, in: Neural Control of Rhythmic Movements (A. Roberts and B. L. Roberts eds.), Cambridge University Press, New York, pp. 159–193.Google Scholar
  8. Blusztajn, J. K., and Wurtman, R. J., 1983, Choline and cholinergic neurons, Science 221:614–620.PubMedCrossRefGoogle Scholar
  9. Chang, J. J., and Gelperin, A., 1980, Rapid taste aversion learning by an isolated molluscan central nervous system, Proc. Natl. Acad. Sci. U.S.A. 77:6204–6206.PubMedCrossRefGoogle Scholar
  10. Chase, R., and Kamil, R., 1983, Neuronal elements in snail tentacles as revealed by horseradish peroxidase backfilling, J. Neurobiol. 14:29–47.PubMedCrossRefGoogle Scholar
  11. Chetail, M., 1963, Etude de la regeneration du tentacule oculaire chez un arionidae (Arion rufus) et un Limacidae (Agriolimax agrestis), Arch. Anat. Microsc. Morphol. Exp. 52:129–203.Google Scholar
  12. Cooke, I., and Gelperin, A., 1984, Immunocytochemical mapping of the neural control system for feeding in Limax maximus, Soc. Neurosci. Abstr. 10:691.Google Scholar
  13. Croll, R., 1983, Gastropod chemoreception, Biol. Rev. 58:293–319.CrossRefGoogle Scholar
  14. Culligan N., and Gelperin, A., 1983, One-trial associative learning by an isolated molluscan CNS: Use of different chemoreceptors for training and testing, Brain Res. 266:319–327.PubMedCrossRefGoogle Scholar
  15. Davis, W. J., Gillette, R., Kovac, M. P., Croll, R. P., and Matera, E. M., 1983, Organization of synaptic inputs to paracerebral feeding command interneurons of Pleurobranchaea californica III. Modifications induced by experience, J. Neurophysiol. 49:1557–1572.PubMedGoogle Scholar
  16. Delaney, K., and Gelperin, A., 1983, The slug Limax maximus shows postingestive food aversion learning to amino acid deficient diets, Soc. Neurosci. Abstr. 9:914.Google Scholar
  17. Delaney, K., and Gelperin, A., 1984, Rapid food-aversion learning with shock as UCS in Limax maximus, Soc. Neurosci. Abstr. 10:509.Google Scholar
  18. Derby, C. D., and Ache, B. W., 1984, Quality coding of a complex odorant in an invertebrate, J. Neurophysiol. 51:906–924.PubMedGoogle Scholar
  19. Dethier, V. G., and Crnjar, R. M., 1982, Candidate codes in the gustatory system of caterpillars, J. Gen. Physiol. 79:549–570.PubMedCrossRefGoogle Scholar
  20. Egan, M., and Gelperin, A., 1981, Olfactory inputs to a bursting serotonergic interneuron in a terrestrial mollusc, J. Molluscan Stud. 47:80–88.Google Scholar
  21. Frömming, E., 1952, Uber die Nahrung von Limax maximus, Anz Schadlingskde 25:41–43.CrossRefGoogle Scholar
  22. Gain, W. A., 1891, Notes on the food of some of the British mollusks, J.Conchol. 6:349–361.Google Scholar
  23. Gelperin, A., 1974, Olfactory basis of homing behavior in the giant garden slug, Limax maximus, Proc. Natl. Acad. Sci. U.S.A. 71:966–970.PubMedCrossRefGoogle Scholar
  24. Gelperin, A., 1975, Rapid food-aversion learning by a terrestrial mollusk, Science 189:567–570.PubMedCrossRefGoogle Scholar
  25. Gelperin, A, 1981, Synaptic modulation by identified serotonin neurons, in: Serotonin Neurotransmission and Behavior (B. Jacobs and A. Gelperin, eds.), MIT Press, Cambridge, pp. 288–304.Google Scholar
  26. Gelperin, A., 1983, Neuroethological studies of associative learning in feeding control systems, in: Neu-roethology and Behavioral Physiology (F. Huber and H. Markl, eds.), Springer-Verlag, Berlin, pp. 189–205.CrossRefGoogle Scholar
  27. Gelperin, A., and Culligan, N., 1984, In vitro expression of in vivo learning by an isolated molluscan CNS, Brain Res. 304:207–213.PubMedCrossRefGoogle Scholar
  28. Gelperin, A., Chang, J. J., and Reingold, S. C., 1978, Feeding motor program in Limax. I. Neuromuscular correlates and control by chemosensory input, J. Neurobiol. 9:295–300.CrossRefGoogle Scholar
  29. Gouyon, P. H., Fort, Ph., and Caraux, G., 1983, Selection of seedlings of Thymus vulgaris by grazing slugs, J. Ecol. 71:299–306.CrossRefGoogle Scholar
  30. Greenberg, M. J., Painter, S. D., Doble, K. E., Nagle, G. T., Price, D. A., and Lehman, H. K., 1983, The molluscan neurosecretory peptide FMRFamide: Comparative pharmacology and relationship to the enkephalins, Fed. Proc. 42:82–86.PubMedGoogle Scholar
  31. Hawkins, R. D., and Kandel, E. R., 1984, Is there a cell biological alphabet for learning? Psycho. Rev. 91:375–391.CrossRefGoogle Scholar
  32. Hopfield, J. J., 1982, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79:2554–2558.PubMedCrossRefGoogle Scholar
  33. Hopfield, J. J., 1984, Neurons with graded response have collective computational properties like those of two state neurons, Proc. Natl. Acad. Sci. USA 81:3088–3092.PubMedCrossRefGoogle Scholar
  34. Hopfield, J. J., Feinstein, D. I., and Palmer, R. G., 1983, “Unlearning” has a stabilizing effect in collective memories, Nature (London) 304:158–159.CrossRefGoogle Scholar
  35. Kamin, L. J., 1969, Predictability, surprise, attention, and conditioning, in: Punishment and Aversive Behavior (R. Church and B. A. Campbell, eds.), Appleton-Century-Crofts, New York pp. 279–296.Google Scholar
  36. Kandel, E. R., and Schwartz, J. H., 1982, Molecular biology of learning: Modulation of transmitter release, Science 218:433–443.PubMedCrossRefGoogle Scholar
  37. Kataoka, S., 1976, Fine structure of the epidermis of the optic tentacle in a slug, Limax flavus L, Tissue Cell 8:47–60.PubMedCrossRefGoogle Scholar
  38. Kemenes, G., Hernádi, L., and Salánki, J., 1982, Identification of cerebral moto-neuron responding to lip stimulation in Helix pomatia, Acta. Biol. Acad. Sci. Hung. 33:215–229.Google Scholar
  39. Kupfermann, I., and Weiss, K. R., 1982, Activity of an identified serotonergic neuron in free moving Aplysia correlates with behavioral arousal, Brain Res. 241:334–337.PubMedCrossRefGoogle Scholar
  40. Lynch, G., and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science 224:1057–1063.PubMedCrossRefGoogle Scholar
  41. Reingold, S. C., and Gelperin, A., 1980, Feeding motor program in Limax. II. Modulation by sensory inputs in intact animals and isolated central nervous system, J. Exp. Biol. 85:1–19.PubMedGoogle Scholar
  42. Rescorla, R. A., 1984, Comments on three Pavlovian paradigms, in: Primary Neural Substrates of Learning and Behavioral Change (D. Alkon and J. Farley, eds.) Cambridge University Press, New York, pp. 25–45.Google Scholar
  43. Rosen, S. C, Weiss, K. R., Cohen, J. L., and Kupfermann, I., 1982, Inter ganglionic cerebral-buccal mechanoafferents of Aplysia: Receptive fields and synaptic connections to different classes of neurons involved in feeding behavior, J. Neurophysiol 48:271–288.PubMedGoogle Scholar
  44. Rosen, S. C, Kupfermann, I., Goldstein, R. S., and Weiss, K. R., 1983, Lesion of a serotonergic modulatory neuron in Aplysia produces a specific defect in feeding behavior, Brain Res. 260:151–155.PubMedCrossRefGoogle Scholar
  45. Sahley, C. L., Gelperin, A., and Rudy, J. W., 1981a, One-trial associative learning modifies food odor preferences of a terrestrial mollusc, Proc. Natl. Acad. Sci. U.S.A. 78:640–642.PubMedCrossRefGoogle Scholar
  46. Sahley, C. L., Rudy, J. W., and Gelperin, A., 1981b, An analysis of associative learning in a terrestrial mollusc: Higher-order conditioning, blocking and a transient US pre-exposure effect, J. Comp. Physiol. 144:1–8.CrossRefGoogle Scholar
  47. Sahley, C. L., Hardison, P., Hsuan, A., and Gelperin, A., 1982, Appetitively reinforced odor-conditioning modulates feeding in Limax maximus, Soc. Neurosci. Abstr. 8:823.Google Scholar
  48. Sahley, C. L., Rudy, J. W., and Gelperin, A., 1984, Associative learning in a mollusc: A comparative analysis, in: Primary Neural Substrates of Learning and Behavioral Change (D. Alkon and J. Farley, eds.) Cambridge University Press, New York, pp. 243–258.Google Scholar
  49. Sahley, C. L., Barry, S. R., and Gelperin, A., 1985, Dietary choline augments associative memory function in Limax maximus, J. Neurobiol., in press.Google Scholar
  50. Stefano, G. B., 1982, Comparative aspects of opioid-dopamine interaction, Cell. Mol. Neurobiol. 2:167–178.PubMedCrossRefGoogle Scholar
  51. Veratti, E., 1900, Ricerche sul sistema nervoso dei Limax, Memorie Reale Instituto Lombardo Scienze Lettere 18:9.Google Scholar
  52. Whelan, R. J., 1982, Response of slugs to unacceptable food items, J. Appl. Ecol. 19:79–87.CrossRefGoogle Scholar
  53. Wieland, S. J., and Gelperin, A., 1983, Dopamine elicits feeding motor program in Limax maximus, J. Neurosci. 3:1735–1745.PubMedGoogle Scholar
  54. Wieland, S. J., Zaininger, H., Jahn, E. G., and Gelperin, A., 1983, Dopamine and serotonin in Limax feeding: Distribution and metabolism, Soc. Neurosci. Abstr. 9:75.Google Scholar
  55. Wieland, S. J., Jahn, E. G., and Gelperin, A., 1984, Measurement and control of dopamine and serotonin release from Limax ganglia in vitro, Soc. Neurosci. Abstr. 10:690.Google Scholar
  56. Zs-Nagy, I., and Sakharov, D. A., 1970, The fine structure of the procerebrum of pulmonate molluscs, Helix and Limax, Tissue Cell 2:399–411.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Alan Gelperin
    • 1
    • 2
  • J. J. Hopfield
    • 1
    • 3
  • D. W. Tank
    • 1
  1. 1.AT & T Bell LaboratoriesMurray HillUSA
  2. 2.Department of BiologyPrinceton UniversityPrincetonUSA
  3. 3.Divisions of Chemistry and BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations