The Development of Serotonin-containing Neurons in the Leech

  • David A. Weisblat
  • William B. KristanJr.


Given the rapid deployment of new experimental techniques in the last decade, many of the important questions in developmental neurobiology appear to be nearing their resolution. One of these questions is that of how each nerve cell acquires its differentiated characteristics: the appropriate membrane channels and receptors, the capacity to produce and store the appropriate transmitter(s), the correct pattern of process outgrowth, and, finally, the establishment of connections of just the right type and strength with just the right constellation of neurons to produce proper behaviors.


Blast Cell Nerve Cord Segmental Ganglion Bilateral Pair Retzius Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bate, C. M., 1976, Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria, J. Embryol. Exp. Morphol. 35:107–123.PubMedGoogle Scholar
  2. Blair, S. S., 1982, Blastomere ablation and the developmental origins of identified monoamine-contain-ing neurons in the leech, Dev. Biol. 95:65–72.CrossRefGoogle Scholar
  3. Blair, S. S., and Weisblat, D. A., 1982, Ectodermal interactions during neurogenesis in the glossiphoniid leech Helobdella triserialis, Dev. Biol. 76:245–262.Google Scholar
  4. Fernandez, J. H., 1980, Embryonic development of the glossiphoniid leech Theromyzon rude: Characterization of developmental stages, Dev. Biol. 76:245–262.PubMedCrossRefGoogle Scholar
  5. Fernandez, J. H., and Olea, N., 1982, Embryonic development of glossiphoniid leeches, in: Developmental Biology of Freshwater Invertebrates, Alan R. Liss, New York, pp. 317–361.Google Scholar
  6. Fuchs, P. A., Henderson, L. P., and Nicholls, J. G., 1982, Chemical transmission between individual Retzius and sensory neurones of the leech in culture, J. Physiol. (London) 323:195–210.Google Scholar
  7. Glover, J. C, and Kramer, A. P., 1982, Serotonin analog selectively ablates identified neurons in the leech embryo, Science 216:317–319.PubMedCrossRefGoogle Scholar
  8. Glover, J. C, and Stuart, D. K., 1983, Differentiation of serotonin-containing neurons in the leech, Soc. Neurosci. Abstr. 9:606.Google Scholar
  9. Goodman, C. S., and Pearson, K. G. (eds.), 1982, Neuronal development: Cellular approaches in invertebrates, NRP Bull. 20:777–942.Google Scholar
  10. Goodman, C. S., O’Shea, M., McCaman, R. E., and Spitzer, N. C., 1979, Embryonic development of identified neurons: Temporal pattern of morphological and biochemical differentiation, Science 204:1219–1222.PubMedCrossRefGoogle Scholar
  11. Henderson, L. P., 1983, The role of 5-hydroxytryptamine as a transmitter between identified leech neurones in culture, J. Physiol. (London) 339:309–324.Google Scholar
  12. Hockfield, S., and McKay, R., 1983, Monoclonal antibodies demonstrate the organization of axons in the leech, J. Neurosci. 3:369–375.PubMedGoogle Scholar
  13. Jeffery, W. R., Tomlinson, C. R., and Brodeur, R. D., 1983, Localization of actin messenger RNA during early ascidian development, Dev. Biol. 99:408–417.PubMedCrossRefGoogle Scholar
  14. Kramer, A. P., and Kuwada, J. Y., 1983, Formation of the receptive fields of leech sensory neurons during embryonic development, J. Neurosci. 3:2474–2486.PubMedGoogle Scholar
  15. Kramer, A. P., and Weisblat, D. A., 1985, Developmental neural kinship groups in the leech, J. Neurosci. 5:(in press).Google Scholar
  16. Kristan, W. B., Jr., and Nusbaum, M. P., 1983, The dual role of serotonin in leech swimming, J. Physiol. (Paris) 78:743–747.Google Scholar
  17. Kuwada, J. Y., 1984, Normal and abnormal development of an identified leech motor neuron, J. Embryol. Exp. Morphol. 79:125–137.PubMedGoogle Scholar
  18. Kuwada, J. Y., and Kramer, A. P., 1983, Early embryonic development of identified sensory neurons in the leech CNS, J. Neurosci. 3:2098–3111.PubMedGoogle Scholar
  19. Lent, C. M., 1973, Retzius cells: NeuroefFectors controlling mucus release by the leech, Science 179:693–696.PubMedCrossRefGoogle Scholar
  20. Lent, C. M., 1982, Fluorescent properties of monoamine neurons following glyoxylic acid treatment of intact leech ganglia, Histochemistry 75:77–89.PubMedCrossRefGoogle Scholar
  21. Lent, C. M., Dickinson, M. H., and Marshall, C. G., 1983, Serotonin controls feeding behavior in the medicinal leech, Soc. Neurosci. Abstr. 9:913.Google Scholar
  22. Li, C., and Calabrese, R. L., 1983, Evidence for proctolin-like substances in the central nervous system of the leech, Soc. Neurosci. Abstr. 9:76.Google Scholar
  23. Mason, A., and Kristan, W. B., Jr., 1982, Neuronal excitation, inhibition and modulation of leech longitudinal muscle, J. Comp. Physiol. 146:527–536.CrossRefGoogle Scholar
  24. Mason, A., Sunderland, A. J., and Leake, L. D., 1979, Effects of leech Retzius cells on body wall muscles, Comp. Biochem. Physiol Comp. Pharmacol. 63:359–361.CrossRefGoogle Scholar
  25. Muller, K. J., Nicholls, J. G., and Stent, G. S. (eds.), 1981, The Neurobiology of the Leech, Cold Spring Harbor Press, New York.Google Scholar
  26. Ready, D., and Nicholls, J. G., 1979, Identified neurones from leech CNS make selective connections in culture, Nature (London) 281:67–69.CrossRefGoogle Scholar
  27. Shankland, M., 1984, Positional determination of supernumerary blast cell death in the leech embryo, Nature (London) 307:9–15.CrossRefGoogle Scholar
  28. Shankland, M., and Weisblat, D. A., 1984, Stepwise commitment of blast cell fates during the positional specification of the O and P cell lines in the leech embroy, Dev. Biol. 106:326–342.PubMedCrossRefGoogle Scholar
  29. Stewart, R. R., and Macagno, E. R., 1984, The development of segmental differences in cell number in the CNS of the leech, Soc. Neurosci. Abstr. 10:512.Google Scholar
  30. Stuart, A. E., Hudspeth, A. J., and Hall, Z. W., 1974, Vital staining of specific monoamine-containing cells in the leech nervous system, Cell Tissue Res. 153:55–61.PubMedCrossRefGoogle Scholar
  31. Stuart, D. K., Glover, J. C, Blair, S. S., and Weisblat, D. A., 1983, Development of leech serotonin neurons examined with serotonin antibody, cell lineage tracer and cell killing, Soc. Neurosci. Abstr. 9:604.Google Scholar
  32. Sulston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N., 1983, The embryonic development of the nematode Caenorhabditis elegans, Dev. Biol. 100:64–119.CrossRefGoogle Scholar
  33. Weisblat, D. A., and Blair, S. S., 1984, Developmental indeterminacy in embryos of the leech Helobdella triserialis, Dev. Biol. 101:326–335.CrossRefGoogle Scholar
  34. Weisblat, D. A., Sawyer, R. T., and Stent, G. S., 1978, Cell lineage analysis by intracellular injection of a tracer enzyme, Science 202:1295–1298.PubMedCrossRefGoogle Scholar
  35. Weisblat, D. A., Harper, G., Stent, G. S., and Sawyer, R. T., 1980a, Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis, Dev. Biol. 76:58–78.CrossRefGoogle Scholar
  36. Weisblat, D. A., Zackson, S. L., Blair, S. S., and Young, J. D., 1980b, Cell lineage analysis by intracellular injection of fluorescent tracers, Science 209:1538–1541.PubMedCrossRefGoogle Scholar
  37. Weisblat, D. A., Kim, S. Y., and Stent, G. S., 1984, Cell lineage in the development of the leech Helobdella triserialis, Dev. Biol. 104:65–85.CrossRefGoogle Scholar
  38. Whitman, C. O., 1878, The embryology of Clepsine, Q.J. Microsc. Sci. (N.S.) 18:215–315.Google Scholar
  39. Whitman, C. O., 1892, The metamerism of Clepsine, in: Festschrift zum 70. Geburtstage R. Leuckarts, Engelman, Leipzig, pp. 385–395.Google Scholar
  40. Whittaker, J. R., 1982, Muscle lineage cytoplasm can change the developmental expression in epidermal lineage cells of ascidian embryos, Dev. Biol. 93:463–470.PubMedCrossRefGoogle Scholar
  41. Willard, A. L., 1981, Effects of serotonin on the generation of the motor program for swimming by the medicinal leech, J. Neurosci. 1:936–944.PubMedGoogle Scholar
  42. Zackson, S. L., 1982, Cell clones and segmentation in leech development, Cell 31:761–770.PubMedCrossRefGoogle Scholar
  43. Zackson, S. L., 1984, Cell lineage, cell interactions and segment formation in the embryo of a glossiphoniid leech, Dev. Biol. 104:143–160.PubMedCrossRefGoogle Scholar
  44. Zipser, B., Stewart, R., Flanagan, T., Flaster, M., and Macagno, E., 1984, Do monoclonal antibodies stain sets of functionally related leech neurons? Cold Spring Harbor Symp. Quant. Biol. 48:551–556.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • David A. Weisblat
    • 1
  • William B. KristanJr.
    • 2
  1. 1.Department of ZoologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of BiologyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations