Skip to main content

Magnetostatic Waves in Layered Planar Structures

  • Chapter

Abstract

The magnetostatic modes in ferrimagnetics were first observed by White and Solt (1956) as spurious peaks in a ferromagnetic resonance experiment. Mercereau and Feynman (1956) described the physical conditions for the occurrence of resonances in the presence of a nonuniform alternating magnetic field. Walker (1957) analyzed the magnetostatic modes of a ferrimagnetic spheroid. Subsequently, the magnetostatic modes in various sample geometries (e.g., sphere, ellipsoid, disc, rod, etc.) were theoretically and experimentally investigated (Walker, 1963). Auld (1960) considered plane wave propagation in an infinite ferrimagnetic medium and showed that, in those regions of the dispersion curves where the wavenumbers are relatively large, the plane wave field satisfies the magnetostatic conditions; thus, the magnetostatic modes are significant even for unbounded media. Damon and Eshbach (1961) investigated the magnetostatic modes in a planar structure, i.e., a semi-infinite ferromagnetic slab. The main purpose of their investigation was to clarify the relationship between the large wavenumber spin wave modes and the magnetostatic modes of a finite sample. As such, they analyzed, in detail, the surface and bulk modes*; of a semi-infinite ferrimagnetic slab which is magnetized parallel-to its face. It was recognized later (Olson and Yaeger, 1965; Brundle and Freedman, 1968a, b) that appreciable time delays can be obtained at microwave frequencies from guided surface and bulk magnetostatic waves. The subsequent theoretical and experimental studies of magnetostatic wave propagation in a variety of layered structures have led to the development of several devices. The initial thrust in this area was on surface waves propagating on rather thick YIG plates. In this case the nonuniform internal dc magnetic field makes the theoretical analysis as well as the interpretation of experimental data somewhat difficult. In recent years with the advent of epitaxial growth of high-quality ferrimagnetic films, the magnetostatic wave propagation in layered planar structures has become significant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, J.D., 1970, Delay of magnetostatic surface waves in YIG, Electron Lett, 6, 718.

    Article  Google Scholar 

  • Adam, J.D., and Collins, J.H., 1976, Microwave magnetostatic delay devices based on epitaxial YIG, Proc. IEEE, 64, 794.

    Article  Google Scholar 

  • Adam, J.D., Bennett, G.A., and Wilkinson, J., 1970, Experimental observation of magneto-static modes in a YIG slab, Electron. Lett, 6, 434.

    Article  Google Scholar 

  • Adam, J.D., Collins, J.H., and Owens, J.M., 1973, Magnetostatic surface wave group delay equaliser, Electron. Lett, 9, 537.

    Article  Google Scholar 

  • Adam, J.D., Owens, J.M and Collins, J.H., 1974, Magnetostatic delay lines for group delay equalization in millimetric waveguide communicating system, IEEE Trans. Magnt,MAG-10 783.

    Google Scholar 

  • Adam, J.D., Collins, J.H., and Owens, J.M., 1975, Microwave device applications of epitaxial magnetic garnets, Radio Electron Eng, 45, 738.

    Article  Google Scholar 

  • Adam, J.D., Patterson, R.W., and O’Keefe, T.W., 1978, Magnetostatic wave in interdigital transducers, J. AppL Phys, 49, 1797.

    Article  Google Scholar 

  • Akhiezer, A.I., Bar’yakhtar, V.G., and Peletminskiï, S.Y., 1963, Coherent amplification of spin waves, Plays. Lett., 4, 129.

    MATH  Google Scholar 

  • Auld, B.A., 1960, Walker modes in large ferrite samples, J. Appl. Phys, 31, 1642.

    Article  Google Scholar 

  • Awai, I., Ohtsuki, K., and Ikenoue, J, 1976, Interaction of magnetic surface waves with drifting carriers, Jpn. J. Appl. Phys, 15, 1297.

    Google Scholar 

  • Bajpai, S.N., Rattan, I., and Srivastava, N.C., 1979, Magnetostatic volume waves in dielectric layered structure: effect of magnetocrystalline anisotropy, J. Appl. Phys, 50, 2887.

    Article  Google Scholar 

  • Bajpai, S.N., and Srivastava, N.C., 1980a, Magnetostatic bulk waves in arbitrarily magnetized dielectric layered structure, Phys. Status Solidi, (a)57, 307.

    Google Scholar 

  • Bajpai, S.N., and Srivastava, N.C., 19806, Magnetostatic bulk wave propagation in a multi-layered structure, Electron. Lett, 16, 269.

    Google Scholar 

  • Bardai, Z.M., Adam, J.D., Collins, J.H., and Parekh, J.P., 1976, Delay lines based on magnetostatic volume waves in epitaxial YIG, AIP Conf. Proc. No. 34, 268.

    Google Scholar 

  • Bardati, F., and Lampariello, P., 1979, The model spectrum of a lossy ferrimagnetic slab, IEEE Trans. Microwave Theory Tech, MIT-27, 679.

    Google Scholar 

  • Basterfield, J., 1969, Chemical polishing of yttrium iron garnet, J. Phys. D. Appl. Phys, 2, 115.

    Article  Google Scholar 

  • Bennett, G.A., and Adam, J.D., 1970, Identification of surface wave resonances on a metal backed YIG slab, Electron. Lett, 6, 789.

    Article  Google Scholar 

  • Benson, H., and Mills, D.L., 1969, Variation principle in spin wave theory: application to the theory of magnetostatic surface waves, Phys. Rev, 188, 849.

    Article  Google Scholar 

  • Bini, M., Filleti, P.L., Millanta, L., and Rubio, N., 1976, Energetic derivation of the amplification of magnetic waves interacting with a flow of charges in a semiconductor, J. Appl. Phys, 47, 3209.

    Google Scholar 

  • Bini, M., Millanta, L., and Rubio, N., 1977, Thin film magnetostatic amplifier; analytical expression of dispersion and gain properties, Electron Lett, 13, 114.

    Article  Google Scholar 

  • Bini, M., Millanta, L., and Rubio, N., 1978a, Interaction of magnetic waves with drifting charges, IEEE Trans. Magnt, MAC-14, 811.

    Google Scholar 

  • Bini, M., Filetti, P.L., Millanta, L., and Rubio, N., 1978b, Amplification of surface magnetic waves in transversely magnetized ferrite slabs, J. Appl. Phys, 49, 3554.

    Article  Google Scholar 

  • Bongianni, W.L., Collins, J.H., Pizzarello, F.A., and Wilson, D.A., 1969, Propagating magnetic waves in epitaxial YIG, IEEE Int. MW Symp. Digest, Dallas, 376.

    Google Scholar 

  • Bongianni, W.L., 1972, Magnetostatic propagation in a dielectric layered structure, J. Appl. Phys, 43, 2541.

    Article  Google Scholar 

  • Bongianni. W.L., 1974, X-band signal processing using magnetic waves, Microwave J, 17, 49.

    Google Scholar 

  • Bresler, A.D., 1959, TE,,,, surface wave at ferrite-air interface, Polytech. Inst. Brooklyn Microwave Res. Inst. Memo 48, R 723–59, PIB-651.

    Google Scholar 

  • Brekhovskikh, L.M., 1960, Waves in Layered Media, Academic Press, New York.

    Google Scholar 

  • Briggs, R.J., 1964, Electron-Stream Interactions with Plasmas, The MIT Press, Massachusetts.

    Google Scholar 

  • Brundle, L.K., and Freedman, N.J., 1968a, Nonlinear behaviour of magnetostatic surface waves, Electron. Lett, 4, 427.

    Article  Google Scholar 

  • Brundle, L.K., and Freedman, N.J., 1968b, Magnetoelastic surface waves on YIG slab, Electron. Lett, 4, 132.

    Article  Google Scholar 

  • Castéra, J.P., 1978, Tunable magnetostatic surface wave oscillator, IEEE Trans. Magnt, MAC-14, 826.

    Google Scholar 

  • Castéra, J.P., and Hartemann, P., 1978, Magnetoelastic surface wave oscillators and resonators, Proc. VIII European Microwave Conf., 658.

    Google Scholar 

  • Chang, N.S., and Matsuo, Y., 1968, Possibility of utilizing the coupling between a backward wave in YIG and waves associated with drift carrier stream in semiconductor, Proc. IEEE, 56, 765.

    Article  Google Scholar 

  • Chang, N.S., and Matsuo, Y., 1975, Characteristics of wave propagation in a composite system consisting of ferrite and semiconductor, Trans. Inst. Electron. Commun. Engr. Jpn, B58, 315.

    Google Scholar 

  • Chang, N.S., and Matsuo, Y., 1977, Ferromagnetic loss effect on magnetoelastic surface wave amplification by YIG-semiconductor coupled system, IEEE Trans. Magnt, MAG13, 1308.

    Google Scholar 

  • Chang, N.S., Yamada, S., and Matsuo, Y., 1975, Characteristics of magnetoelastic surface wave propagation in a layered structure consisting of metals, dielectrics, a semiconductor and YIG, Electron. Lett, 11, 83.

    Article  Google Scholar 

  • Chang, N.S., Yamada, S., and Matsuo, Y., 1976a, Amplification of magnetostatic surface waves in a layered structure consisting of metals, dielectrics, a semiconductor and YIG, J. Appl. Phys, 47, 385.

    Article  Google Scholar 

  • Chang, N.S., Yamada, S., and Matsuo, Y., 1976b, Amplification characteristics of magnetostatic surface and volume waves in semiconductor-dielectric-YIG-metal system, Wave Electron, 2, 341.

    Google Scholar 

  • Collins, J.H., Adam, J.D., and Owens, J.M., 1972, Microwave device applications of epitaxial ferrimagnetic films, Proc. European Solid State Devices Conf., 83.

    Google Scholar 

  • Collins, J.H., and Pizzarello, F.A., 1973. Propagating magnetic waves in thick films. A contemporary technology to surface wave acoustics, Int. J. Electron, 34, 319.

    Article  Google Scholar 

  • Collins, J.H., Owens, J.M., and Smith, C.V., Jr., 1977, Magnetostatic wave signal processing, Proc. Ultrasonics Symposium, 541.

    Google Scholar 

  • Courtois, L., Declercq, G., and Purichard, M., 1971, On the nonreciprocal aspect of gyromagnetic surface wave, AIP Conf. Proc. No. 5, 1541.

    Google Scholar 

  • Damon, R.W., and Eshbach, J.R., 1961, Magnetostatic modes of a ferromagnetic slab, J. Phys. Chem. Solids, 19, 308.

    Article  Google Scholar 

  • Damon, R.W., and van de Varrt, H., 1965, Propagation of magnetostatic spin waves at microwave frequencies in a normally magnetized disc, J. Appl. Phys, 36, 3453.

    Article  Google Scholar 

  • De Wames, R.E., and Wolfram, T., 1976, Characteristics of magnetostatic surface waves for a metallized ferrite slab, J. Appl. Phys, 41, 5243.

    Article  Google Scholar 

  • Elachi, C., 1975, Electromagnetic wave propagation in periodic media, IEEE Trans. Magnt, MAG-11, 36.

    Google Scholar 

  • Eshbach, J.R., and Damon, R.W., 1960, Surface magnetoelastic modes and surface spin waves, Phys. Rev, 118, 1208.

    Article  Google Scholar 

  • Ganguly, A.K., and Vittoria, C., 1974, Magnetostatic wave propagation in double layers of magnetically anisotropic slab, J. Appl. Phys, 45, 4665.

    Article  Google Scholar 

  • Ganguly, A.K., and Webb, D.C., 1975, Microstrip excitation of magnetostatic surface waves: Theory and experiment, IEEE Trans. Microwave Theory Tech, MIT-23, 998.

    Google Scholar 

  • Ganguly, A.K., Vittoria, C., and Webb, D., 1974, Interaction of surface magnetic waves in anisotropic magnetic slabs, AIP Conf. Proc. Magnetism and Magnetic Materials, 495.

    Google Scholar 

  • Ganguly, A.K., Webb, D.C., and Banks, C., 1978, Complex radiation impedence of microstrip excited magnetostatic surface waves, IEEE Trans. Microwave Theory Tech, MTT-26, 444.

    Google Scholar 

  • Gardiol, F.E., 1967, On the thermodynamic paradox in ferrite loaded waveguides, Proc. IEEE, 55, 1616.

    Article  Google Scholar 

  • Gerson, T.J., and Nadan, J.S., 1974, Surface electromagnetic modes of a ferrite slab, IEEE Trans. Microwave Theory Tech, MIT-22, 757.

    Google Scholar 

  • Glass, H.L., and Elliot, M.T., 1975, Attainment of intrinsic linewidth in yttrium iron garnet films grown by liquid phase epataxy, X Int. Conf. Crystallography, Amsterdam, paper 08. 3–8.

    Google Scholar 

  • Grant, P.M., Adam, J.D., and Collins, J.H., 1974, Surface wave device applications in microwave communication system, IEEE Trans. Commun, 22, 1410.

    Article  Google Scholar 

  • Gupta, S.S., and Srivastava, N.C., 1979, Power flow and energy distribution of magnetostatic bulk waves in dielectric layered structure, J. Appl. Phys, 50, 6697.

    Article  Google Scholar 

  • Gupta, S.S., and Srivastava, N.C., 1980, Theory of magnetic surface wave propagation in a thick YIG slab, J. Appl. Phys, 51, 4618.

    Article  Google Scholar 

  • Gupta, S.S., and Srivastava, N.C., 1980b, Ray optics approach to magnetostatic bulk wave propagation in a YIG slab, IEEE Trans. Microwave Theory Tech, MIT-28, 915.

    Google Scholar 

  • Howarth, J., 1975, A magnetoelastic delay line equaliser, Proc. IEEE MTTS Int. MW Symposium, 371.

    Google Scholar 

  • Hurd, R.A., 1970, Surface waves at ferrite-metal boundaries, Electron. Len, 6, 262.

    Article  Google Scholar 

  • Kawasaki, K., Takagi, H., and Umeno, M., 1974a, Passband control of surface magnetostatic waves by spacing a metal plate apart from the ferrite surface, IEEE Trans. Microwave Theory Tech, MIT-22, 924.

    Google Scholar 

  • Kawasaki, K., Takagi, H., and Umeno, M., 19746, The interaction of surface magnetostatic waves with drifting carriers in semiconductors, IEEE Trans. Microwave Theory Tech,MTT-22, 918.

    Google Scholar 

  • Kogelnik, H., and Weber, H.P., 1974, Rays, stored energy and power flow in dielectric waveguides, J. Opt. Soc. Am., 64, 174.

    Google Scholar 

  • Lax, B., and Button, K.J., 1956, Theory of ferrites in rectangular waveguides, IRE Trans. Antennas Propagt, AP-4, 531.

    Google Scholar 

  • Levinstein, H.J., Licht, S., Landorf, R.W., and Blank, S.L., 1971, Growth of high quality garnet thin films from supercooled melt, Appl. Phys. Leu, 19, 486.

    Article  Google Scholar 

  • Masuda, M., Chang, N.S., and Matsuo, Y., 1974, Magnetostatic surface waves in ferrite slab adjacent to semiconductor, IEEE Trans. Microwave Theory Tech, MTT-22, 132.

    Google Scholar 

  • Mee, J.E., Pullian, G.R., Archer, A.L., and Besser, P.J., 1969, Magnetic oxide films, IEEE Trans. Magnt, MAG-5, 717.

    Google Scholar 

  • Mercereau, J.E., and Feynman, R.P., 1956, Physical conditions for ferromagnetic resonance, Phys. Rev, 104, 63.

    Article  Google Scholar 

  • Merry, J.B., and Sethares, J.C., 1973, Low loss magnetostatic surface waves at frequencies up to 15 GHz, IEEE Trans. Magnt, MAG-9, 527.

    Google Scholar 

  • Miller, N.D.J., 1976a, Magnetostatic volume wave propagation in a dielectric layered structure, Phys. Status Solidi, (a)37, 83.

    Google Scholar 

  • Miller, N.D.J., 1976b, Nondispersive magnetostatic volume wave delay line, Electron. Lett, 12, 466.

    Article  Google Scholar 

  • Miller, N.D.J., 1977, Nonreciprocal propagation of magnetostatic volume waves, Phys. Status Solidi (a)43, 593.

    Google Scholar 

  • Miller, N.D.J., 1978, Nonreciprocal magnetostatic volume waves, IEEE Trans. Magnt, MAG-14, 829.

    Google Scholar 

  • Miller, N.D.J., and Brown, D., 1976, Tunable magnetoelastic surface wave oscillator, Electron. Lett, 12, 209.

    Article  Google Scholar 

  • Morgenthaler, F.R., 1970, Nonreciprocal magnetostatic surface waves with independently controllable propagation and decay constant, J. Appl. Phys, 41, 1014.

    Article  Google Scholar 

  • Morgenthaler, F.R., 1977, Magnetostatic waves bound to a dc field gradient, IEEE Trans. Magnt, MAG-13, 1252.

    Google Scholar 

  • Neviere, M., Petit, R., and Cadilhac, M., 1973, About the theory of optical grating complex waveguide system, Opt. Commun, 8, 113.

    Article  Google Scholar 

  • Newburgh, R.G., Blacksmith, P., Budreau, A.J., and Sethares, J.C., 1974, Acoustic and magnetic surface wave ring interferometers for rotation sensing, Proc. IEEE, 62, 1621.

    Article  Google Scholar 

  • O’Keeffe, T.W., and Patterson, R.W., 1978, Magnetostatic surface wave propagation in finite samples, J. Appl. Phys, 49, 4886.

    Article  Google Scholar 

  • Olson, F.A., and Yaeger, J.R., 1965, Microwave delay techniques using YIG, IEEE Trans. Microwave Theory Tech, MTT-13, 63.

    Google Scholar 

  • Owens, J.M., Collins, J.H., and Adam, J.D., 1975, Planar microwave multipole filters using LPE—YIG, AIP Conf. Proc. No. 24, 497.

    Google Scholar 

  • Parekh, J.P., 1973, Magnetostatic surface waves on a partially metallized YIG plate, Proc. IEEE, 61, 1371.

    Article  Google Scholar 

  • Parekh, J.P., 1975, Dielectrically induced surface waves and the magnetodynamic modes of a YIG plate, J. Appl. Phys, 46, 5040.

    Article  Google Scholar 

  • Parekh, J.P., 1979, Theory for magnetostatic forward volume wave excitation, J. AppL Phys, 50, 2452.

    Article  Google Scholar 

  • Parekh, J.P., and Ponamgi, S.R., 1973, Dielectrically induced surface wave on a YIG substrate, J. AppL Phys, 44, 1384, errt. 4791.

    Google Scholar 

  • Parekh, J.P., and Tuan, H.S., 1979a, Excitation of magnetostatic surface waves in an arbitrary direction on tangentially YIG film, IEEE Trans. Megnt, MAC-15, 1747.

    Google Scholar 

  • Parekh, J.P., and Tuan, H.S., 1979b, Meander line excitation of magnetostatic surface waves, Proc. IEEE, 67, 182.

    Article  Google Scholar 

  • Peng, S.T., Tamir, T., and Bertoni, H.L., 1975, Theory of periodic waveguides, IEEE Trans. Microwave Theory Tech, MIT-23, 123.

    Google Scholar 

  • Pizzarello, F.A., Coerver, L.E., and Collins, J.H., 1970, Magnetic steering of magnetostatic waves in epitaxial YIG films, J. Appl. Phys, 41, 1016.

    Article  Google Scholar 

  • Renard, R.H., 1964, Total reflection: a new evaluation of the Goos-Hanchen shift, J. Opt. Soc. Am., 54, 1190.

    Google Scholar 

  • Robinson, B.B., Vural, B., and Parekh, J.P., 1970, Spin-wave/carrier wave interaction, IEEE Trans. Electron Devices, ED-17, 224.

    Google Scholar 

  • Schiiz, W., 1973, Spin wave propagation in epitaxial YIG films, Phillips Res. Rep, 28, 50. Schlömann, E., 1969, Amplification of magnetoelastic surface waves by interaction with

    Google Scholar 

  • drifting carriers in crossed electric and magnetic fields, J. Appl. Phys,40 1422.

    Google Scholar 

  • Schneider, B., 1972, Effect of crystalline anisotropy on the magnetostatic spin wave modes in ferromagnetic plates: I. Theoretical results for infinite plates, Phys. Status Solidi, (b)51, 325.

    Google Scholar 

  • Seidel, H., and Fletcher, R.C., 1959, Gyromagnetic modes in waveguides partially loaded with ferrite, Bell Syst. Tech. J, 38, 1427.

    Google Scholar 

  • Seshadri, S.R., 1970, Surface magnetostatic modes of ferrite slab, Proc. IEEE, 58, 506.

    Article  Google Scholar 

  • Seshadri, S.R., 1978, Theory of a YIG film filter, J. Appl. Phys, 49, 6079.

    Article  Google Scholar 

  • Sethares, J.C., 1975, Magnetostatic surface waves on a cylinder, Air Force Cambridge Res. Rept. AFCRL-TR-0380.

    Google Scholar 

  • Sethares, J.C., 1978, Magnetostatic surface wave transducer design, Int. Microwave Symp. Digest, IEEE Cat. # 78 CH 1335–7 MIT.

    Google Scholar 

  • Sethares, J.C., and Merry, J.B., 1974, Magnetostatic surface waves in ferrimagnetics above 4 GHz, Air Force Cambridge Res. Rept. AFCRL-TR-74–0112, Phys. Sc. Res. Paper No. 587.

    Google Scholar 

  • Sethares, J.C., and Stiglitz, M.R., 1974, Propagation loss and MSSW delay lines, IEEE Trans. Magot, MAC-10, 787.

    Google Scholar 

  • Sethares, J.C., and Weinberg, I.J., 1979a, Apodization of variable coupling magnetoelastic surface wave transducers, J. AppL Phys, 50, 2458.

    Article  Google Scholar 

  • Sethares, J.C., and Weinberg, I.J., 1979b, Insertion loss of apodized-weighted and nonuniform magnetostatic surface wave transducers, Joint Inter MAG-MMM Conf., New York, paper 6-C.

    Google Scholar 

  • Sethares, J.C., Tsai, T., and Koltunov, I., 1978, Periodic magnetostatic surface wave transducers, Rome Air Force Dev. Centre Res. Rept., RADC-TR-78–78.

    Google Scholar 

  • Sittig, E.K., and Coquin, G.A., 1968, Filters and dispersive delay lines using repetitively mismatched ultrasonic transmission line, IEEE Trans. Sonics Ultrason, SU-15, 111.

    Google Scholar 

  • Sparks, M., 1964, Ferromagnetic Relaxation Theory, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Sparks, M., 1969, Magnetostatic surface modes of a YIG slab, Electron. Leu, 5, 618.

    Article  Google Scholar 

  • Srivastava, N.C., 1976, Magnetostatic modes of a slab of hexagonal planar ferrite, J. AppL Phys, 47, 5447.

    Article  Google Scholar 

  • Srivastava, N.C., 1978b, Propagation of magnetostatic waves along curved ferrite surfaces, IEEE Trans. Microwave Theory Tech, MIT-26, 252.

    Google Scholar 

  • Srivastava, N.C., 1978c, Propagation of surface waves through the gap between oppositely magnetized ferrite substrates, IEEE Trans. Microwave Theory Tech, MIT-26, 213.

    Google Scholar 

  • Steele, M.C., and Vural, B., 1969, Wave Interaction in Solid State Plasmas, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Sykes, C.G., Adam, J.D., and Collins, J.H., 1976, Magnetostatic wave propagation in periodic structures, Appl. Phys. Lett, 29, 388.

    Article  Google Scholar 

  • Szustakowski, M., and Wecki, B., 1973, Amplification of magnetostatic surface waves in YIG-Ge hybrid system, Proc. Vib. Probl, 14, 155.

    Google Scholar 

  • Tamir, T., 1973, Inhomogeneous wave types at planar interface: II. Surface waves, Optik, 37, 204.

    Google Scholar 

  • Tien, P.K., 1971, Light waves in thin films and integrated optics, Appl. Opt, 10, 2395.

    Article  Google Scholar 

  • Tien, P.K., 1977, Integrated optics and new wave phenomena and optical waveguides, Rev. Mod. Phys, 49, 361.

    Article  Google Scholar 

  • Trivelpiece, A.W., Ignatius, A., and Holscher, P.C., 1961, Amplification of magnetostatic waves by interaction with charged carriers drifting through a semiconductor, J. Appl. Phys, 32, 259.

    Article  Google Scholar 

  • Tsai, M.C., Wu, H.J., Owens, J.M., and Smith, C.V., Jr., 1976, Magnetostatic propagation for uniform normally magnetized multilayer planar structures, AIP Conf. Proc, No. 34, 280.

    Article  Google Scholar 

  • Tsutsumi, M., 1974, Magnetostatic surface wave propagation through air gap between adjacent magnetic substrates, Proc. IEEE, 62, 541.

    Article  Google Scholar 

  • Tsutsumi, M., and Yuki, Y., 1975, Magnetostatic wave propagation in periodically magnetized ferrites, Electron. Comm. Jpn, 58, 74.

    Google Scholar 

  • Tsutsumi, M., Bhattacharya, T., and Kumagai, N., 1976, Effect of magnetic perturbation on magnetic surface wave propagation, IEEE Trans. Microwave Theory Tech, MTT-24, 591.

    Google Scholar 

  • Tsutsumi, M., Sakaguchi, Y., and Kumagai, N., 1977a, Behaviour of magnetostatic waves in a periodically corrugated YIG slab, IEEE Trans. Microwave Theory Tech, MTT-25, 224.

    Google Scholar 

  • Tsutsumi, M., Sakaguchi, Y., and Kumagai, N., 1977b, The magnetostatic surface wave propagation in a corrugated YIG slab, Appl. Phys. Lett, 31, 779.

    Article  Google Scholar 

  • Vaskovskii, A.V., Zubkov, V.I., Ki’ldishev, V.N., and Murmuzev, B.A., 1972, Interaction of surface magnetostatic waves with carriers on a ferrite-semiconductor interface, JETP Lett, 16, 2.

    Google Scholar 

  • Vaslow, D.F., 1973, Group delay time for a surface wave on a YIG film backed by a grounded dielectric, Proc. IEEE, 61, 142.

    Article  Google Scholar 

  • Vaslow, D.F., 1974, Surface waves on a ferrite magnetized perpendicular to the interface, IEEE Trans. Microwave Theory Tech, MTT-22, 743.

    Google Scholar 

  • Vittoria, C., and Wilsey, N.D., 1974, Magnetostatic wave propagation loss in an anisotropic insulator, J. Appl. Phys, 45, 414.

    Article  Google Scholar 

  • Volluet, G., 1980, Unidirectional magnetostatic forward volume wave transducers, IEEE Trans. Magnt, MAG-16, 1162.

    Google Scholar 

  • Vural, B 1966, Interaction of spin waves with drifted carriers in solids, J. Appl. Phys,37 1030.

    Google Scholar 

  • Vural, B and Thomas, E., 1968, Helicon-spin wave interaction in the magnetic semiconductor Ag, Cd, _ Cr Se„ Appl. Phys. Lett,12 14.

    Google Scholar 

  • Walker, L.R 1957, Magnetoelastic modes in ferromagnetic resonance, Phys. Rev,105 390.

    Google Scholar 

  • Walker, L.R 1963, in: Magnetism,Vol. 1, (G.T. Rado and H. Suhl, eds.), Academic Press, New York.

    Google Scholar 

  • Webb, D.C., Vittoria, C., Lubitz, P., and Lesoff, H., 1975, Magnetostatic propagation in thin films of liquid phase epitaxy YIG, IEEE Trans. Magnt, MAC-11, 1259.

    Google Scholar 

  • Weinberg, I.J., and Sethares, J.C., 1978, Magnetostatic wave transducers with variable coupling, Rome Air Force Dev. Centre Res. Rept., RADC-TR-78–205.

    Google Scholar 

  • White, R.L., and Solt, I.H., Jr., 1956, Multiple ferromagnetic resonance in ferrite spheres, Phys. Rev, 104, 56.

    Article  Google Scholar 

  • Wolfram, T., 1970, Magnetostatic surface waves in layered magnetic structures, J. Appl. Phys, 41, 4748.

    Article  Google Scholar 

  • Wu, H.J., Smith, C.V., Jr., Collins, J.H., and Owens, J.M., 1977, Bandpass filtering with multibar magnetostatic surface wave transducers, Electron. Lett, 13, 610.

    Article  Google Scholar 

  • Yamada, S., Chang, N.S., and Matsuo, Y., 1977, Energy analysis for the amplification phenomena of magnetostatic surface waves in a YIG-semiconductor coupled system, IEEE Trans. Microwave Theory Tech, MIT-25, 600.

    Google Scholar 

  • Young, P., 1969, Effect of boundary conditions on the propagation of surface magnetostatic waves in a transversely magnetized thin slab of YIG, Electron. Lett, 5, 429.

    Article  Google Scholar 

  • Yukawa, T.., Yamada, S., Abe, K., and Ikenoue, J., 1977. Effect of metal on dispersion relation of magnetostatic surface waves, Jpn. J. Appl. Phys, 16, 2187.

    Article  Google Scholar 

  • Yukawa, T., Ikenoue, J., Yamada, S., and Abe, K., 1978a, Effect of metal on dispersion relation of magnetostatic volume waves, J. Appl. Phys, 49, 346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sodha, M.S., Srivastava, N.C. (1981). Magnetostatic Waves in Layered Planar Structures. In: Microwave Propagation in Ferrimagnetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5839-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5839-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5841-2

  • Online ISBN: 978-1-4757-5839-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics