Skip to main content

Isolation and Characterization of Membrane Binding Proteins

  • Chapter
Methods in Membrane Biology

Abstract

The term binding protein in the field of membrane transport refers to the group of relatively low molecular weight proteins possessing a reversible binding activity for solutes of specific transport systems. Most of these proteins have been isolated from gram-negative bacteria by a cold osmotic shock treatment. No enzymatic function has been demonstrated for these proteins. The mild shock treatment of gram-negative bacteria also removes the periplasmic enzymes (Heppel, 1971), so called because they appear to be located in the “periplasm,” i.e., the space between the cytoplasmic membrane and the cell wall (Mitchell, 1961). A large body of data has accumulated to suggest that the binding proteins act as the recognition site for active transport systems. Recent genetic evidence indicates that these proteins play a direct role in solute transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J., 1966, Chemotaxis in bacteria, Science 153:708.

    Article  PubMed  CAS  Google Scholar 

  • Adler, J., 1969, Chemoreceptors in bacteria: Studies of Chemotaxis reveal systems that detect attractants independently of their metabolism, Science 166:1588.

    Article  PubMed  CAS  Google Scholar 

  • Adler, J., 1975, Chemotaxis in bacteria, Ann. Rev. Biochem. 44:341.

    Article  PubMed  CAS  Google Scholar 

  • Aksamit, R., and Koshland, D. E., Jr., 1972, A ribose binding protein of Salmonella ty-phimurium, Biochem. Biophys. Res. Commun. 48:1348.

    Article  CAS  Google Scholar 

  • Amanuma, H., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria. XII. Substrate specificities of the branched chain amino acid-binding proteins of Escherichia coli, J. Biochem. (Tokyo) 76:1165.

    CAS  Google Scholar 

  • Ames, G. F.-L., 1975, Isolation of transport mutants in bacteria, in: Methods in Enzymology, Academic Press, New York.

    Google Scholar 

  • Ames, G. F., and Lever, J., 1970, Components of histidine transport: Histidine-binding proteins and hisP protein, Proc. Natl Acad. Sci. USA 66C:1096.

    Article  Google Scholar 

  • Ames, G. F., and Lever, J. E., 1972, The histidine-binding protein J is a component of histidine transport: Identification of its structural gene, hisJ, J. Biol. Chem. 247: 4309.

    CAS  Google Scholar 

  • Anderson, J. J., Quay, S. C, and Oxender, D. L., 1975, Mapping of two D-leucine utilization mutations affecting the regulation of branched-chain amino acid transport systems in Escherichia coli, Abst. Annu. Meet. Am. Soc. Microbiol. 1975:169.

    Google Scholar 

  • Anraku, Y., 1968a, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins, J. Biol. Chem. 243:3116.

    PubMed  CAS  Google Scholar 

  • Anraku, Y, 1968b, Transport of sugars and amino acids in bacteria. II. Properties of galactose- and leucine-binding proteins, J. Biol. Chem. 243:3123.

    PubMed  CAS  Google Scholar 

  • Anraku, Y., 1968c, Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport, J. Biol. Chem. 243:3128.

    CAS  Google Scholar 

  • Anraku, Y., and Heppel, L. A., 1967, On the nature of the changes induced in Escherichia coli by osmotic shock, J. Biol. Chem. 242:2561.

    PubMed  CAS  Google Scholar 

  • Anraku, Y., Kobayashi, H., Amanuma, H., and Yamaguchi, A., 1973, Transport of sugars and amino acids in bacteria. VII. Characterization of the reaction of restoration of active transport mediated by binding protein, J. Biochem. (Tokyo) 74:1249.

    CAS  Google Scholar 

  • Barash, H., and Halpern, Y., 1971, Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12, Biochem. Biophys. Res. Commun. 45:681.

    Article  PubMed  CAS  Google Scholar 

  • Benesi, H. A., and Hildebrand, J. H., 1949, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71:2703.

    Article  CAS  Google Scholar 

  • Berg, H. C, 1975, Chemotaxis in bacteria, Ann. Rev. Biophys. Bioeng. 4:119.

    Article  CAS  Google Scholar 

  • Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70:1514.

    Article  PubMed  CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1972, A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli, J. Biol. Chem. 247:7684.

    CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249:7747.

    CAS  Google Scholar 

  • Boos, W., 1974a, Bacterial transport, Ann. Rev. Biochem. 43:123.

    Article  PubMed  CAS  Google Scholar 

  • Boos, W., 1974b, in: Current Topics in Membranes and Transport, Vol. 5 (A. Kleinzeller and F. Bronner, eds.), Academic Press, New York.

    Google Scholar 

  • Boos, W., and Gordon, A. S., 1971, Transport properties of the galactose-binding protein of Escherichia coli: Occurrence of two conformational states, J. Biol. Chem. 246:621.

    PubMed  CAS  Google Scholar 

  • Boos, W., and Sarvas, M. O., 1970, Close linkage between a galactose binding protein and the β-methyl galactoside permease in Escherichia coli, Eur. J. Biochem. 13:526.

    Article  CAS  Google Scholar 

  • Briggs, G. E., and Haldane, J. B. S., 1925, A note on the kinetics of enzyme action, Biochem. J. 19:338.

    PubMed  CAS  Google Scholar 

  • Bush, E. T., 1963, General applicability of the channels ratio method of measuring liquid scintillation counting efficiencies, Anal. Chem. 35:1024.

    Article  CAS  Google Scholar 

  • Bussey, H., and Umbarger, H. E., 1970, Biosynthesis of the branched-chain amino acids in yeast : A leucine-binding component and regulation of leucine transport, J. Bacteriol. 103:277.

    PubMed  CAS  Google Scholar 

  • Cold Spring Harbor Laboratory, 1972, Structure and function of proteins at the three-dimensional level, in: Cold Spring Harbor Symposia on Quantitative Biology, Vol. 36, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Colowick, S. P., and Womack, F. C, 1969, Binding of diffusible molecules by macro-molecules: Rapid measurement by rate of dialysis, J. Biol. Chem. 244:114.

    Google Scholar 

  • Cornish-Bowden, A., and Eisenthal, R., 1974, Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods, Biochem. J. 139:721.

    PubMed  CAS  Google Scholar 

  • Corradino, R. A., and Wasserman, R. H., 1971, Stimulation of calcium transport in embryonic chick intestine by incubation in medium containing vitamin D3-induced calcium-binding protein, Biophys. J. 11:276.

    Google Scholar 

  • Crick, F. H. C, and Kendrew, J. C, 1957, X-ray analysis and protein structure, Adv. Protein Chem. 12:134.

    Google Scholar 

  • Cuatrecasas, P., 1970, Protein purification by affinity chromatography, J. Biol. Chem. 245:3059.

    PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., and Anfinsen, C. B., 1971a, Affinity chromatography, in: Methods in Enzymology, Vol. 22A (W. B. Jakoby, ed.), p. 345, Academic Press, New York.

    Google Scholar 

  • Cuatrecasas, P., and Anfinsen, C. B., 1971b, Affinity chromatography, Ann. Rev. Biochem. 40:259.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, S. J., 1974, Mechanism of energy coupling for transport of D-ribose in Escherichia coli, J. Bacteriol. 120:295.

    CAS  Google Scholar 

  • Dowd, J. E., and Riggs, D. S., 1965, A comparison of estimates of Km constants from various linear transformations, J. Biol. Chem. 240:863.

    PubMed  CAS  Google Scholar 

  • Dunn, B. M., and Chaiken, I. M., 1974, Quantitative affinity chromatography: Determination of binding constants by elution with competitive inhibitors, Proc. Natl. Acad. Sci. USA 31:2382.

    Article  Google Scholar 

  • Eisenthal, R., and Cornish-Bowden, A., 1974, The direct linear plot: A new graphical procedure for estimating enzyme kinetic parameters, Biochem. J. 139:715.

    PubMed  CAS  Google Scholar 

  • Eisenberg, D., 1970, X-ray crystallography and enzyme structure, in: The Enzymes, Vol. I (P. D. Boyer, ed.), pp. 1–90, Academic Press, New York.

    Google Scholar 

  • Englund, P. T., Huberman, J. A., Jovin, T. M., and Kornberg, A., 1969, Enzymatic synthesis of deoxyribonucleic acid. XXX. Binding of triphosphates to deoxyribonucleic acid polymerase, J. Biol. Chem. 244:3038.

    PubMed  CAS  Google Scholar 

  • Fournier, R. E., and Pardee, A. B., 1974, Evidence for inducible, L-malate binding proteins in the membranes of Bacillus subtilis, J. Biol. Chem. 249:5948.

    CAS  Google Scholar 

  • Fukui, S., and Miyairi, S., 1970, Active transport of glucose-1-phosphate in Agrobacte-rium tumefaciens, J. Bacteriol. 101:685.

    CAS  Google Scholar 

  • Furlong, C. E., 1970, Purification of a leucine-specific binding protein and evidence for a second leucine transport system, Fed. Proc. 29:341.

    Google Scholar 

  • Furlong, C. E., and Heppel, L. A., 1971, Leucine binding proteins from Escherichia coli, in: Methods in Enzymology, Vol. XVIIB (H. Tabor and C. W. Tabor, eds.), pp. 639–643, Academic Press, New York.

    Google Scholar 

  • Furlong, C. E., and Weiner, J. H., 1970, Purification of a leucine-specific binding protein from Escherichia coli, Biochem. Biophys. Res. Commun. 38:1076.

    Article  PubMed  CAS  Google Scholar 

  • Furlong, C. E., Morris, R. G., Kandrach, M., and Rosen, B. P., 1972, A multichamber equilibrium dialysis apparatus, Anal. Biochem. 47:514.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, R. G., and Rosenberg, H., 1974, The relationship between the phosphate-binding protein and a regulatory gene product from Escherichia coli, Biochim. Biophys. Acta 351:77.

    Article  CAS  Google Scholar 

  • Gordon, A. S., Lombardi, F. J., and Kaback, H. R., 1972, Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase-coupled amino acid-transport systems, Proc. Natl. Acad. Sci. USA 69:358.

    Article  PubMed  CAS  Google Scholar 

  • Gurof F. G., and Bromwell, K. E., 1971, Phenylalanine uptake and phenylalanine binding material in Comamonas sp., Arch. Biochem. Biophys. 137:379.

    Article  Google Scholar 

  • Halpern, Y. S., 1974, Genetics of amino acid transport in bacteria, Ann. Rev. Genet. 8:103.

    Article  PubMed  CAS  Google Scholar 

  • Hanes, C. S., 1932, The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochem. J. 26:1406.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.

    PubMed  CAS  Google Scholar 

  • Harrison, L. I., Christensen, H. N., Handlogten, M. E., Oxender, D. L., and Quay, S. C., 1975, The transport of L-4-azaleucine in Escherichia coli K-12, J. Bacteriol. 122:957.

    PubMed  CAS  Google Scholar 

  • Hazelbauer, G. L , 1975, Maltose chemoreceptor of Escherichia coli, J. BacterioL 122: 206.

    CAS  Google Scholar 

  • Hazelbauer, G. L., and Adler, J., 1971, Role of the galactose binding protein in Chemotaxis of Escherichia coli toward galactose, Nature (London) New Biol. 230:101.

    CAS  Google Scholar 

  • Hazelbauer, G. L., Mesibov, R. E., and Adler, J., 1969, Escherichia coli mutants defective in Chemotaxis toward specific chemicals, Proc. Natl. Acad. Sci. USA 64:1300.

    Article  PubMed  CAS  Google Scholar 

  • Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and on active transport, J. Gen. Physiol. 54:95s.

    Article  CAS  Google Scholar 

  • Heppel, L. A., 1971, The concept of periplasms enzymes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 223–247, Academic Press, New York.

    Google Scholar 

  • Hofstee, B. H. J., 1973, Hydrophobic affinity chromatography of proteins, Anal. Biochem. 52:430.

    Article  PubMed  CAS  Google Scholar 

  • Hogg, R. W., 1971, In vivo detection of L-arabinose-binding protein, CRM-negative mutants, J. Bacteriol 105:604.

    PubMed  CAS  Google Scholar 

  • Hogg, R. W., and Englesberg, E., 1969, L-Arabinose binding protein from Escherichia coli B/r, J. Bacteriol 100:423.

    PubMed  CAS  Google Scholar 

  • Hummel, J. P., and Dreyer, W. J., 1962, Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63:530.

    Article  PubMed  CAS  Google Scholar 

  • Imagawa, T., 1974, Studies on the primary structure of the sulfate binding protein from Salmonella typhimurium. II. Thermolysin digestion, J. Biochem. (Tokyo) 72:911.

    Google Scholar 

  • Imagawa, T., and Tsugita, A., 1974, Studies on the primary structure of sulfate binding protein from Salmonella typhimurium. I. Tryptic digestion, J. Biochem. (Tokyo) 72:889.

    Google Scholar 

  • Imagawa, T., Suzuki, S., and Tsugita, A., 1974, Studies on the primary structure of the sulfate binding protein from Salmonella typhimurium. III. Digestions with pepsin and dilute hydrochloric acid, J. Biochem. (Tokyo) 72:927.

    Google Scholar 

  • Jolley, M. E., Rudikoff, S., Potter, M., and Glaudemans, C. P. J., 1973, Spectral changes on binding oligosaccharides to murine immunoglobulin A myeloma proteins, Biochemistry 12:3039.

    Article  PubMed  CAS  Google Scholar 

  • Josse, J., 1966, Constitutive inorganic pyrophosphatase of Escherichia coli, J. Biol. Chem. 241:1938.

    CAS  Google Scholar 

  • Kaback, H. R., 1970a, Transport, Ann. Rev. Biochem. 39:561.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1970b, in: Current Topics in Membranes and Transport (A. Kleinzeller, and F. Bronner, eds.), Academic Press, New York.

    Google Scholar 

  • Kaback, H. R., 1973, Bacterial transport mechanisms, in: Bacterial Membranes and Walls (L. Leive, ed.), pp. 241–292, Dekker, New York.

    Google Scholar 

  • Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science 186:882.

    Article  PubMed  CAS  Google Scholar 

  • Kellerman, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K12. Involvement of a “periplasms” maltose-binding protein, Eur. J. Biochem. 47:139.

    Article  Google Scholar 

  • Kelmers, A. D., Hancher, C. W., Phares, E. F., and Novelli, G. D., 1971, Large-scale fermentation of Escherichia coli and recovery of transfer ribonucleic acids, in: Methods in Enzymology, Vol. 20 (S. P. Colowick and N. D. Kaplan, eds.), p. 3, Academic Press, New York.

    Google Scholar 

  • Kennedy, E. P., Rumley, M. K., and Armstrong, J. B., 1974, Direct measurement of the binding of labeled sugars to the lactose permease M protein, J. Biol. Chem. 249:33.

    PubMed  CAS  Google Scholar 

  • Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol Chem. 247:7257.

    CAS  Google Scholar 

  • Klein, W. L., Dahms, A. S., and Boyer, P. D., 1970, The nature of the coupling of oxidative energy to amino acid transport, Fed. Proc. 28:341, No. 540.

    Google Scholar 

  • Klotz, I. M., 1946, The application of the law of mass action to binding of proteins. Interactions with calcium, Arch. Biochem. 9:109.

    PubMed  CAS  Google Scholar 

  • Klotz, I. M., and Hunston, D. L., 1971, Properties of graphical representations of multiple classes of binding sites, Biochemistry 10:3065.

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D. E., Jr., 1974, Chemotaxis as a model for sensory systems, FEBS Lett. 40:S3.

    Article  PubMed  Google Scholar 

  • Koshland, D. E., Jr., and Neet, K. E., 1968, The catalytic and regulatory properties of enzymes, Ann. Rev. Biochem. 37:359.

    Article  PubMed  CAS  Google Scholar 

  • Kreishman, G. P., Robertson, D. E., and Ho, C, 1973, PMR studies of the substrate induced conformational change of glutamine binding protein from E. coli, Biochem. Biophys. Res. Commun. 53:18.

    Article  CAS  Google Scholar 

  • Krichevsky, M. I., Zaveler, S. A., and Bulkeley, J., 1968, Computer-aided single and dual isotope channels ratio quench correction in liquid scintillation counting, Anal. Biochem. 22:442.

    Article  PubMed  CAS  Google Scholar 

  • Kuno, H., and Kihara, K., 1967, Simple microassay of protein with membrane filters, Nature (London) 215:91 A.

    Article  Google Scholar 

  • Kustu, S. G., and Ames, G. F.-L., 1974, The histidine-binding protein J, a histidine transport component, has two different functional sites, J. Biol. Chem. 249:6976.

    PubMed  CAS  Google Scholar 

  • Kuzuya, H., Bromwell, K., and Guroff, G., 1971, The phenylalanine-binding protein of Comamonas sp. (ATCC 11299a), J. Biol. Chem. 246:6371.

    PubMed  CAS  Google Scholar 

  • Langridge, R., Shinagawa, H., and Pardee, A. B., 1970, Sulfate-binding protein from Salmonella typhimurium: Physical properties, Science 169:59.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M., and Oxender, D. L., 1972, unpublished observation.

    Google Scholar 

  • Lengeler, J., Hermann, K. O., Unsold, H. J., and Boos, W., 1971, The regulation of the ß-methylgalactoside transport system and of the galactose binding protein of Escherichia coli Kl2, Eur. J. Biochem. 19:457.

    Article  PubMed  CAS  Google Scholar 

  • Lever, J. E., 1972a, Purification and properties of a component of histidine transport in Salmonella typhimurium: The histidine-binding protein J, J. Biol. Chem. 247:4317.

    PubMed  CAS  Google Scholar 

  • Lever, J. E., 1972b, Quantitative assay of the binding of small molecules to protein: Comparison of dialysis and membrane filter assays, Anal. Biochem. 50:73.

    Article  PubMed  CAS  Google Scholar 

  • Linn, E. C. C., 1970, The genetics of bacterial transport systems, Ann. Rev. Genet. 4:225.

    Article  Google Scholar 

  • Linn, E. C. C, 1971, The molecular basis of membrane transport systems, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 285–341, Academic Press, New York.

    Google Scholar 

  • Lotan, R., and Sharon, N., 1973, The fluorescence of wheat germ agglutinin and of its complexes with saccharides, Biochem. Biophys. Res. Commun. 55:1340.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R. M., and Koshland, D. E., Jr., 1972, The gradient-sensing mechanism in bacterial Chemotaxis, Proc. Natl. Acad. Sci. USA 69:2509.

    Article  PubMed  CAS  Google Scholar 

  • Malamy, M. H., and Horecker, B. L., 1964a, Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation, Biochemistry 3:1891.

    Google Scholar 

  • Malamy, M. H., and Horecker, B. L., 1964b, Purification and crystallization of the alkaline phosphatase of Escherichia coli, Biochemistry 3:1893.

    Article  PubMed  CAS  Google Scholar 

  • March, S. C, Parikh, I., and Cuatrecasas, P., 1974, A simplified method for cyanogen bromide activation of agarose for affinity chromatography, Anal. Biochem. 60:149.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, E. B., Silhavy, T. J., and Boos, W., 1974, Involvement of a tryptophan residue in the binding site of Escherichia coli galactose-binding protein, Biochemistry 13:993.

    Article  PubMed  CAS  Google Scholar 

  • Medveczky, N., and Rosenberg, H., 1969, The binding and release of phosphate by a protein isolated from Escherichia coli, Biochim. Biophys. Acta 192:369.

    Article  CAS  Google Scholar 

  • Medveczky, N., and Rosenberg, H., 1970, The phosphate-binding protein of Escherichia coli, Biochim. Biophys. Acta 211:158.

    Article  CAS  Google Scholar 

  • Miner, K. M., and Frank, L., 1974, Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli, J. Bacteriol. 117:1093.

    CAS  Google Scholar 

  • Mitchell, P., 1961, Biological Structure and Function, Vol. II (T. W. Goodwin and O. Lindberg, eds.), pp. 581–603, Academic Press, New York.

    Google Scholar 

  • Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucine-binding protein from Escherichia coli, Science 161:182.

    CAS  Google Scholar 

  • Neu, H. C., and Chou, J., 1967, Release of surface enzymes in Enterobacteriaceae by osmotic shock, J. Bacteriol. 94:1934.

    PubMed  CAS  Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1964a, On the surface location of enzymes in Escherichia coli, Biochem. Biophys. Res. Commun. 17:215.

    Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1964b, The release of ribonuclease into the medium when Escherichia coli cells are converted to spheroplasts, J. Biol. Chem. 239:3893.

    PubMed  CAS  Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240:3685.

    PubMed  CAS  Google Scholar 

  • Neu, H. C, Ashman, D. F., and Price, T. D., 1967, Effect of ethylenediaminetetraacetic acid-tris(hydroxymethyl)amino methane on release of the acid-soluble nucleotide pool and on breakdown of ribosomal ribonucleic acid, J. Bacteriol. 93:1360.

    PubMed  CAS  Google Scholar 

  • Nichol, L. W., Ogston, A. G., Winzor, D. J., and Sawyer, W. H., 1974, Evaluation of equilibrium constants by affinity chromatography, Biochem. J. 143:435.

    PubMed  CAS  Google Scholar 

  • Nishimune, T., and Hayashi, R., 1971, Thiamine-binding protein and thiamine uptake by Escherichia coli, Biochim. Biophys. Acta 244:573.

    Article  CAS  Google Scholar 

  • Nossal, N. G., and Heppel, L. A., 1966, The release of enzymes by osmotic shock from Escherichia coli in exponential phase, J. Biol. Chem. 241:3055.

    PubMed  CAS  Google Scholar 

  • Ohta, N., Galsworthy, P. R., and Pardee, A. B., 1971, Genetics of sulfate transport by Salmonella typhimurium, J. Bacteriol. 105:1053.

    CAS  Google Scholar 

  • Ordal, G. W., and Adler, J., 1974, Properties of mutants in galactose taxis and transport, J. Bacteriol. 117:517.

    PubMed  CAS  Google Scholar 

  • Oshima, R. G., Willis, R. C., Furlong, C. E., and Schneider, J. A., 1974, Binding assays for amino acids: The utilization of a cystine binding protein from Escherichia coli for the determination of acid-soluble cystine in small physiological samples, J. Biol. Chem. 249:6033.

    PubMed  CAS  Google Scholar 

  • Oxender, D. L., 1972a, Membrane transport, Ann. Rev. Biochem. 41:111.

    Article  Google Scholar 

  • Oxender, D. L., 1972b, Membrane transport, in: Metabolic Pathways, Vol. 6 (L. E. Hokin, ed.), Academic Press, New York.

    Google Scholar 

  • Oxender, D. L., 1974, Membrane transport proteins, in: Biomembranes, Vol. 5 (L. A. Manson, ed.), p. 25, Academic Press, New York.

    Google Scholar 

  • Oxender, D. L., 1975, Genetic approaches to the study of transport systems, in: Biological Transport (H. N. Christensen, ed.), Benjamin, New York.

    Google Scholar 

  • Oxender, D. L., and Quay, S. C., 1975, Binding proteins and transport, Ann. N.Y. Acad. Sci., in press.

    Google Scholar 

  • Pardee, A. B., 1966, Purification and properties of a sulfate-binding protein from Salmonella typhimurium, J. Biol. Chem. 241:5886.

    PubMed  CAS  Google Scholar 

  • Pardee, A. B., 1967, Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium, Science 156:1627.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A. B., 1968, Membrane transport proteins, Science 162:632.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A. B., and Prestidge, L. S., 1966, Cell-free activity of a sulfate binding site involved in active transport, Proc. Natl. Acad. Sci. USA 55:189.

    Article  PubMed  CAS  Google Scholar 

  • Pardee, A. B. and Watanabe, K., 1968, Location of sulfate-binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049.

    CAS  Google Scholar 

  • Pardee, A. B., Prestidge, L. S., Whipple, M. B., and Dreyfuss, J., 1966, A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium, J. Biol. Chem. 241:3962.

    CAS  Google Scholar 

  • Parsons, R. G., and Hogg, R. W., 1974a, Crystallization and characterization of the l-arabinose-binding protein of Escherichia coli B/r, J. Biol. Chem. 249:3602.

    PubMed  CAS  Google Scholar 

  • Parsons, R. G., and Hogg, R. W., 1974b, A comparison of the L-arabinose- and D-galactose-binding proteins of Escherichia coli B/r, J. Biol. Chem. 249:3608.

    PubMed  CAS  Google Scholar 

  • Penrose, W. R., Nichoalds, G. E. P., Piperno, J. R., and Oxender, D. L., 1968, Purification and properties of a leucine-binding protein from Escherichia coli, J. Biol. Chem. 243:5921.

    PubMed  CAS  Google Scholar 

  • Piperno, J. R., and Oxender, D. L., 1966, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732.

    PubMed  CAS  Google Scholar 

  • Privat, J. P., Delmotte, F., Mialonier, G., Bouchard, P., and Monsigny, M., 1974, Fluorescence studies of saccharide binding to wheat-germ agglutinin (lectin), Eur. J. Biochem. 47:5.

    Article  PubMed  CAS  Google Scholar 

  • Quay, S. C, Oxender, D. L., Tsuyumu, S., and Umbarger, H. E., 1975, Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria, J. Bacteriol. 122:994.

    PubMed  CAS  Google Scholar 

  • Quiocho, F., Phillips, G. N., Jr., Parsons, R. G., and Hogg, R. W., 1974, Crystallography data on an L-arabinose-binding protein from Escherichia coli, J. Mol. Biol. 86:491.

    Article  PubMed  CAS  Google Scholar 

  • Rahmanian, M., and Oxender, D. L., 1972, Derepressed leucine transport activity in Escherichia coli, J. Supramol. Struct. 1:55.

    Article  CAS  Google Scholar 

  • Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coli K12, J. Bacteriol. 116:1258.

    PubMed  CAS  Google Scholar 

  • Richarme, G., and Kepes, A., 1974, Release of glucose from purified galactose-binding protein of Escherichia coli upon addition of galactose, Eur. J. Biochem. 45:127.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, A. R., and Rotman, B., 1975, Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12, Proc. Natl. Acad. Sci. USA 72:423.

    Article  PubMed  CAS  Google Scholar 

  • Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:138s.

    Article  CAS  Google Scholar 

  • Roseman, S., 1972a, Transport of carbohydrates by bacteria, in: Metabolic Pathways, Vol. 6 (L. E. Hokin, ed.), pp. 41–89, Academic Press, New York.

    Google Scholar 

  • Roseman, S., 1912b, A bacterial phosphotransferase system and its role in sugar transport, in: The Molecular Basis of Biological Transport, Vol. 3 (J. F. Woessner, Jr. and F. Huijing, eds.), pp. 181–218, Academic Press, New York.

    Google Scholar 

  • Rosen, B. P., 1971, Basic amino acid transport in Escherichia coli, J. Biol. Chem. 246: 3653.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P., 1973, Basic amino acid transport in Escherichia coli. II. Purification and properties of an arginine-specific binding protein, J. Biol. Chem. 248:1211.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P., and Heppel, L. A., 1973, Present status of binding proteins that are released from gram-negative bacteria by osmotic shock, in: Bacterial Membranes and Walls (L. Leive, ed.), pp. 209–239, Dekker, New York.

    Google Scholar 

  • Rosen, B. P., and Vasington, F. D., 1971, Purification and characterization of a histidine binding protein from Salmonella typhimurium LT2 and its relationship to the histi dine permease system, J. Biol. Chem. 246:5351.

    PubMed  CAS  Google Scholar 

  • Roth, J. R., 1970, Genetic techniques in studies of bacterial metabolism, in: Methods in Enzymology, Vol. 17A (H. Tabor and C. W. Taylor, eds.), p. 3, Academic Press, New York.

    Google Scholar 

  • Rotman, B., and Ellis, J. H., Jr., 1972, Antibody-mediated modification of the binding properties of a protein related to galactose transport, J. Bacteriol. 111:791.

    PubMed  CAS  Google Scholar 

  • Scatchard, G., 1949, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660.

    Article  CAS  Google Scholar 

  • Schleif, R., 1969, An L-arabinose-binding protein and arabinose permeation in Escherichia coli, J. Mol. Biol. 46:185.

    Article  PubMed  CAS  Google Scholar 

  • Shaltiel, S., Ames, G. F.-L., and Noel, K. D., 1973, Hydrophobic chromatography in the purification of the histidine-binding protein J from Salmonella typhimurium, Arch. Biochem. Biophys. 159:174.

    Article  PubMed  CAS  Google Scholar 

  • Silhavy, T. J., and Boos, W., 1975, The “hidden ligand” of the galactose binding protein, Eur. J. Biochem. 54:163.

    Article  PubMed  CAS  Google Scholar 

  • Silhavy, T. J., Boos, W., and Kalckar, H. M, 1975a, The role of the galactose-binding protein in galactose transport and Chemotaxis, Mosbacher Colloquium, Germany.

    Google Scholar 

  • Silhavy, T. J., Szmelcman, S., Boos, W., and Schwartz, M., 19756, On the significance of the retention of ligand by protein, Proc. Natl. Acad. Sci. USA 72:2120.

    Google Scholar 

  • Simmons, S., and Toye, N. O., 1966, Peptidases in spheroplasts of Escherichia coli K12, J. Biol. Chem. 241:3852.

    Google Scholar 

  • Singer, S. J., 1974, The molecular organization of membranes, Ann. Rev. Biochem. 43:805.

    Article  PubMed  CAS  Google Scholar 

  • Slayman, C. W., Genetic control of membrane transport, in: Current Topics in Membranes and Transport, Vol. 4 (A. Kleinzeller and F. Bronner, eds.), pp. 1–174, Academic Press, New York.

    Google Scholar 

  • Steers, E., Cuatrecasas, P., and Pollard, H. B., 1971, The purification of β-galactosidase from Escherichia coli by affinity chromatography, J. Biol. Chem. 246:196.

    PubMed  CAS  Google Scholar 

  • Stuart, W. D., and DeBusk, A. G., 1971, Molecular transport. I. In vitro studies of isolated glycoprotein subunits of the amino acid transport system of Neurospora crassa conidia, Arch. Biochem. Biophys. 144:512.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. L., Norrel, S. A., and Hanna, M. L., 1972, Uptake of cyanocobalamin by Escherichia coli B: Some characteristics and evidence for a binding protein, Arch. Biochem. Biophys. 148:366.

    Article  PubMed  CAS  Google Scholar 

  • Tsay, S.-S., Brown, K. K., and Gaudy, E. T., 1971, Transport of glycerol by Pseudomonas aeruginosa, J. Bacteriol. 108:82.

    PubMed  CAS  Google Scholar 

  • Tso, W.-W., and Adler, J., 1974, Negative Chemotaxis in Escherichia coli, J. Bacteriol. 118:560.

    PubMed  CAS  Google Scholar 

  • Vallee, B. L., and Riordan, J. F., 1969, Chemical approaches to the properties of active sites of enzymes, Ann. Rev. Biochem. 38:733.

    Article  PubMed  CAS  Google Scholar 

  • Vesterberg, O., 1971, Isoelectric focusing of proteins, in: Methods in Enzymology, Vol. 22 (W. B. Jakoby, ed.), p. 389, Academic Press, New York.

    Google Scholar 

  • Wasserman, R. H., 1974, personal communication.

    Google Scholar 

  • Wasserman, R. H., and Corradino, R. A., 1973, Vitamin D, calcium, and protein synthesis, Vitam. Horm. N.Y. 31:43.

    Article  CAS  Google Scholar 

  • Wasserman, R. H., Corradino, R. A., and Taylor, A. N., 1968, Vitamin D-dependent calcium-binding protein: Purification and some properties, J. Biol. Chem. 243:3978.

    PubMed  CAS  Google Scholar 

  • Weiner, J. H., and Heppel, L. A., 1971, A binding protein for glutamine and its relation to active transport in Escherichia coli, J. Biol. Chem. 246:6933.

    Google Scholar 

  • Wiley, W. R., 1970, Tryptophan transport in Neurospora crassa: A tryptophan-binding protein released by osmotic shock, J. Bacteriol. 103:656.

    PubMed  CAS  Google Scholar 

  • Wilkinson, G. N., 1961, Statistical estimations in enzyme kinetics, Biochem. J. 80:324.

    PubMed  CAS  Google Scholar 

  • Willis, R. C, and Furlong, C. E., 1974, Purification and properties of a ribose-binding protein from Escherichia coli, J. Biol. Chem. 249:6926.

    CAS  Google Scholar 

  • Willis, R. C, and Furlong, C. E., 1975, Purification and properties of a periplasmic glutamate-aspartate binding protein from E. coli K12 strain W3092, J. Biol. Chem. 250:2574.

    PubMed  CAS  Google Scholar 

  • Willis, R. C, Morris, R. G., Cirakoglu, C, Shellenberg, G. D., Gerber, N. H., and Furlong, C. E., 1974, Preparation of the periplasmic binding proteins from Salmonella typhimurium and Escherichia coli, Arch. Biochem. Biophys. 161:64.

    Article  CAS  Google Scholar 

  • Willsky, G. R., Bennet, R. L., and Malamy, M. H., 1973, Inorganic phosphate transport in Escherichia coli: Involvement of two genes which play a role in alkaline phosphatase regulation, J. Bacteriol. 113:529.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., 1974, Source of energy for the Escherichia coli galactose transport systems induced by galactose, J. Bacteriol. 120:866.

    PubMed  CAS  Google Scholar 

  • Wilson, O. H., and Holden, J. T., 1969a, Arginine transport and metabolism in osmotic-ally shocked and unshocked cells of Escherichia coli W, J. Biol. Chem. 244:2737.

    PubMed  CAS  Google Scholar 

  • Wilson, O. H., and Holden, J. T., 1969b, Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions, J. Biol. Chem. 244:2743.

    PubMed  CAS  Google Scholar 

  • Wilson, T. H., Kashket, E., and Maloney, P., 1975, Methods for studying transport in bacteria, in : Methods in Membrane Biology, Vol. 4 (E. D. Korn, ed.), Plenum Press, New York.

    Google Scholar 

  • Wood, J. M., 1975, Leucine transport in Escherichia coli: The resolution of multiple transport systems and their coupling to metabolic energy, J. Biol. Chem. 250:4477.

    PubMed  CAS  Google Scholar 

  • Zeppezauer, M., Eklund, H., and Zeppezauer, E. S., 1968, Microdiffusion cells for the growth of single protein crystals by means of equilibrium dialysis, Arch. Biochem. Biophys. 126:564.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oxender, D.L., Quay, S.C. (1976). Isolation and Characterization of Membrane Binding Proteins. In: Korn, E.D. (eds) Methods in Membrane Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5817-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5817-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5819-1

  • Online ISBN: 978-1-4757-5817-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics