Isolation and Characterization of Membrane Binding Proteins

  • Dale L. Oxender
  • Steven C. Quay

Abstract

The term binding protein in the field of membrane transport refers to the group of relatively low molecular weight proteins possessing a reversible binding activity for solutes of specific transport systems. Most of these proteins have been isolated from gram-negative bacteria by a cold osmotic shock treatment. No enzymatic function has been demonstrated for these proteins. The mild shock treatment of gram-negative bacteria also removes the periplasmic enzymes (Heppel, 1971), so called because they appear to be located in the “periplasm,” i.e., the space between the cytoplasmic membrane and the cell wall (Mitchell, 1961). A large body of data has accumulated to suggest that the binding proteins act as the recognition site for active transport systems. Recent genetic evidence indicates that these proteins play a direct role in solute transport.

Keywords

Osmotic Shock Equilibrium Dialysis Shocked Cell Shock Fluid Periplasmic Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., 1966, Chemotaxis in bacteria, Science 153:708.PubMedCrossRefGoogle Scholar
  2. Adler, J., 1969, Chemoreceptors in bacteria: Studies of Chemotaxis reveal systems that detect attractants independently of their metabolism, Science 166:1588.PubMedCrossRefGoogle Scholar
  3. Adler, J., 1975, Chemotaxis in bacteria, Ann. Rev. Biochem. 44:341.PubMedCrossRefGoogle Scholar
  4. Aksamit, R., and Koshland, D. E., Jr., 1972, A ribose binding protein of Salmonella ty-phimurium, Biochem. Biophys. Res. Commun. 48:1348.CrossRefGoogle Scholar
  5. Amanuma, H., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria. XII. Substrate specificities of the branched chain amino acid-binding proteins of Escherichia coli, J. Biochem. (Tokyo) 76:1165.Google Scholar
  6. Ames, G. F.-L., 1975, Isolation of transport mutants in bacteria, in: Methods in Enzymology, Academic Press, New York.Google Scholar
  7. Ames, G. F., and Lever, J., 1970, Components of histidine transport: Histidine-binding proteins and hisP protein, Proc. Natl Acad. Sci. USA 66C:1096.CrossRefGoogle Scholar
  8. Ames, G. F., and Lever, J. E., 1972, The histidine-binding protein J is a component of histidine transport: Identification of its structural gene, hisJ, J. Biol. Chem. 247: 4309.Google Scholar
  9. Anderson, J. J., Quay, S. C, and Oxender, D. L., 1975, Mapping of two D-leucine utilization mutations affecting the regulation of branched-chain amino acid transport systems in Escherichia coli, Abst. Annu. Meet. Am. Soc. Microbiol. 1975:169.Google Scholar
  10. Anraku, Y., 1968a, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins, J. Biol. Chem. 243:3116.PubMedGoogle Scholar
  11. Anraku, Y, 1968b, Transport of sugars and amino acids in bacteria. II. Properties of galactose- and leucine-binding proteins, J. Biol. Chem. 243:3123.PubMedGoogle Scholar
  12. Anraku, Y., 1968c, Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport, J. Biol. Chem. 243:3128.Google Scholar
  13. Anraku, Y., and Heppel, L. A., 1967, On the nature of the changes induced in Escherichia coli by osmotic shock, J. Biol. Chem. 242:2561.PubMedGoogle Scholar
  14. Anraku, Y., Kobayashi, H., Amanuma, H., and Yamaguchi, A., 1973, Transport of sugars and amino acids in bacteria. VII. Characterization of the reaction of restoration of active transport mediated by binding protein, J. Biochem. (Tokyo) 74:1249.Google Scholar
  15. Barash, H., and Halpern, Y., 1971, Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12, Biochem. Biophys. Res. Commun. 45:681.PubMedCrossRefGoogle Scholar
  16. Benesi, H. A., and Hildebrand, J. H., 1949, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71:2703.CrossRefGoogle Scholar
  17. Berg, H. C, 1975, Chemotaxis in bacteria, Ann. Rev. Biophys. Bioeng. 4:119.CrossRefGoogle Scholar
  18. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70:1514.PubMedCrossRefGoogle Scholar
  19. Berger, E. A., and Heppel, L. A., 1972, A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli, J. Biol. Chem. 247:7684.Google Scholar
  20. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249:7747.Google Scholar
  21. Boos, W., 1974a, Bacterial transport, Ann. Rev. Biochem. 43:123.PubMedCrossRefGoogle Scholar
  22. Boos, W., 1974b, in: Current Topics in Membranes and Transport, Vol. 5 (A. Kleinzeller and F. Bronner, eds.), Academic Press, New York.Google Scholar
  23. Boos, W., and Gordon, A. S., 1971, Transport properties of the galactose-binding protein of Escherichia coli: Occurrence of two conformational states, J. Biol. Chem. 246:621.PubMedGoogle Scholar
  24. Boos, W., and Sarvas, M. O., 1970, Close linkage between a galactose binding protein and the β-methyl galactoside permease in Escherichia coli, Eur. J. Biochem. 13:526.CrossRefGoogle Scholar
  25. Briggs, G. E., and Haldane, J. B. S., 1925, A note on the kinetics of enzyme action, Biochem. J. 19:338.PubMedGoogle Scholar
  26. Bush, E. T., 1963, General applicability of the channels ratio method of measuring liquid scintillation counting efficiencies, Anal. Chem. 35:1024.CrossRefGoogle Scholar
  27. Bussey, H., and Umbarger, H. E., 1970, Biosynthesis of the branched-chain amino acids in yeast : A leucine-binding component and regulation of leucine transport, J. Bacteriol. 103:277.PubMedGoogle Scholar
  28. Cold Spring Harbor Laboratory, 1972, Structure and function of proteins at the three-dimensional level, in: Cold Spring Harbor Symposia on Quantitative Biology, Vol. 36, Cold Spring Harbor, N.Y.Google Scholar
  29. Colowick, S. P., and Womack, F. C, 1969, Binding of diffusible molecules by macro-molecules: Rapid measurement by rate of dialysis, J. Biol. Chem. 244:114.Google Scholar
  30. Cornish-Bowden, A., and Eisenthal, R., 1974, Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods, Biochem. J. 139:721.PubMedGoogle Scholar
  31. Corradino, R. A., and Wasserman, R. H., 1971, Stimulation of calcium transport in embryonic chick intestine by incubation in medium containing vitamin D3-induced calcium-binding protein, Biophys. J. 11:276.Google Scholar
  32. Crick, F. H. C, and Kendrew, J. C, 1957, X-ray analysis and protein structure, Adv. Protein Chem. 12:134.Google Scholar
  33. Cuatrecasas, P., 1970, Protein purification by affinity chromatography, J. Biol. Chem. 245:3059.PubMedGoogle Scholar
  34. Cuatrecasas, P., and Anfinsen, C. B., 1971a, Affinity chromatography, in: Methods in Enzymology, Vol. 22A (W. B. Jakoby, ed.), p. 345, Academic Press, New York.Google Scholar
  35. Cuatrecasas, P., and Anfinsen, C. B., 1971b, Affinity chromatography, Ann. Rev. Biochem. 40:259.PubMedCrossRefGoogle Scholar
  36. Curtis, S. J., 1974, Mechanism of energy coupling for transport of D-ribose in Escherichia coli, J. Bacteriol. 120:295.Google Scholar
  37. Dowd, J. E., and Riggs, D. S., 1965, A comparison of estimates of Km constants from various linear transformations, J. Biol. Chem. 240:863.PubMedGoogle Scholar
  38. Dunn, B. M., and Chaiken, I. M., 1974, Quantitative affinity chromatography: Determination of binding constants by elution with competitive inhibitors, Proc. Natl. Acad. Sci. USA 31:2382.CrossRefGoogle Scholar
  39. Eisenthal, R., and Cornish-Bowden, A., 1974, The direct linear plot: A new graphical procedure for estimating enzyme kinetic parameters, Biochem. J. 139:715.PubMedGoogle Scholar
  40. Eisenberg, D., 1970, X-ray crystallography and enzyme structure, in: The Enzymes, Vol. I (P. D. Boyer, ed.), pp. 1–90, Academic Press, New York.Google Scholar
  41. Englund, P. T., Huberman, J. A., Jovin, T. M., and Kornberg, A., 1969, Enzymatic synthesis of deoxyribonucleic acid. XXX. Binding of triphosphates to deoxyribonucleic acid polymerase, J. Biol. Chem. 244:3038.PubMedGoogle Scholar
  42. Fournier, R. E., and Pardee, A. B., 1974, Evidence for inducible, L-malate binding proteins in the membranes of Bacillus subtilis, J. Biol. Chem. 249:5948.Google Scholar
  43. Fukui, S., and Miyairi, S., 1970, Active transport of glucose-1-phosphate in Agrobacte-rium tumefaciens, J. Bacteriol. 101:685.Google Scholar
  44. Furlong, C. E., 1970, Purification of a leucine-specific binding protein and evidence for a second leucine transport system, Fed. Proc. 29:341.Google Scholar
  45. Furlong, C. E., and Heppel, L. A., 1971, Leucine binding proteins from Escherichia coli, in: Methods in Enzymology, Vol. XVIIB (H. Tabor and C. W. Tabor, eds.), pp. 639–643, Academic Press, New York.Google Scholar
  46. Furlong, C. E., and Weiner, J. H., 1970, Purification of a leucine-specific binding protein from Escherichia coli, Biochem. Biophys. Res. Commun. 38:1076.PubMedCrossRefGoogle Scholar
  47. Furlong, C. E., Morris, R. G., Kandrach, M., and Rosen, B. P., 1972, A multichamber equilibrium dialysis apparatus, Anal. Biochem. 47:514.PubMedCrossRefGoogle Scholar
  48. Gerdes, R. G., and Rosenberg, H., 1974, The relationship between the phosphate-binding protein and a regulatory gene product from Escherichia coli, Biochim. Biophys. Acta 351:77.CrossRefGoogle Scholar
  49. Gordon, A. S., Lombardi, F. J., and Kaback, H. R., 1972, Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase-coupled amino acid-transport systems, Proc. Natl. Acad. Sci. USA 69:358.PubMedCrossRefGoogle Scholar
  50. Gurof F. G., and Bromwell, K. E., 1971, Phenylalanine uptake and phenylalanine binding material in Comamonas sp., Arch. Biochem. Biophys. 137:379.CrossRefGoogle Scholar
  51. Halpern, Y. S., 1974, Genetics of amino acid transport in bacteria, Ann. Rev. Genet. 8:103.PubMedCrossRefGoogle Scholar
  52. Hanes, C. S., 1932, The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley, Biochem. J. 26:1406.PubMedGoogle Scholar
  53. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  54. Harrison, L. I., Christensen, H. N., Handlogten, M. E., Oxender, D. L., and Quay, S. C., 1975, The transport of L-4-azaleucine in Escherichia coli K-12, J. Bacteriol. 122:957.PubMedGoogle Scholar
  55. Hazelbauer, G. L , 1975, Maltose chemoreceptor of Escherichia coli, J. BacterioL 122: 206.Google Scholar
  56. Hazelbauer, G. L., and Adler, J., 1971, Role of the galactose binding protein in Chemotaxis of Escherichia coli toward galactose, Nature (London) New Biol. 230:101.Google Scholar
  57. Hazelbauer, G. L., Mesibov, R. E., and Adler, J., 1969, Escherichia coli mutants defective in Chemotaxis toward specific chemicals, Proc. Natl. Acad. Sci. USA 64:1300.PubMedCrossRefGoogle Scholar
  58. Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and on active transport, J. Gen. Physiol. 54:95s.CrossRefGoogle Scholar
  59. Heppel, L. A., 1971, The concept of periplasms enzymes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 223–247, Academic Press, New York.Google Scholar
  60. Hofstee, B. H. J., 1973, Hydrophobic affinity chromatography of proteins, Anal. Biochem. 52:430.PubMedCrossRefGoogle Scholar
  61. Hogg, R. W., 1971, In vivo detection of L-arabinose-binding protein, CRM-negative mutants, J. Bacteriol 105:604.PubMedGoogle Scholar
  62. Hogg, R. W., and Englesberg, E., 1969, L-Arabinose binding protein from Escherichia coli B/r, J. Bacteriol 100:423.PubMedGoogle Scholar
  63. Hummel, J. P., and Dreyer, W. J., 1962, Measurement of protein-binding phenomena by gel filtration, Biochim. Biophys. Acta 63:530.PubMedCrossRefGoogle Scholar
  64. Imagawa, T., 1974, Studies on the primary structure of the sulfate binding protein from Salmonella typhimurium. II. Thermolysin digestion, J. Biochem. (Tokyo) 72:911.Google Scholar
  65. Imagawa, T., and Tsugita, A., 1974, Studies on the primary structure of sulfate binding protein from Salmonella typhimurium. I. Tryptic digestion, J. Biochem. (Tokyo) 72:889.Google Scholar
  66. Imagawa, T., Suzuki, S., and Tsugita, A., 1974, Studies on the primary structure of the sulfate binding protein from Salmonella typhimurium. III. Digestions with pepsin and dilute hydrochloric acid, J. Biochem. (Tokyo) 72:927.Google Scholar
  67. Jolley, M. E., Rudikoff, S., Potter, M., and Glaudemans, C. P. J., 1973, Spectral changes on binding oligosaccharides to murine immunoglobulin A myeloma proteins, Biochemistry 12:3039.PubMedCrossRefGoogle Scholar
  68. Josse, J., 1966, Constitutive inorganic pyrophosphatase of Escherichia coli, J. Biol. Chem. 241:1938.Google Scholar
  69. Kaback, H. R., 1970a, Transport, Ann. Rev. Biochem. 39:561.PubMedCrossRefGoogle Scholar
  70. Kaback, H. R., 1970b, in: Current Topics in Membranes and Transport (A. Kleinzeller, and F. Bronner, eds.), Academic Press, New York.Google Scholar
  71. Kaback, H. R., 1973, Bacterial transport mechanisms, in: Bacterial Membranes and Walls (L. Leive, ed.), pp. 241–292, Dekker, New York.Google Scholar
  72. Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science 186:882.PubMedCrossRefGoogle Scholar
  73. Kellerman, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K12. Involvement of a “periplasms” maltose-binding protein, Eur. J. Biochem. 47:139.CrossRefGoogle Scholar
  74. Kelmers, A. D., Hancher, C. W., Phares, E. F., and Novelli, G. D., 1971, Large-scale fermentation of Escherichia coli and recovery of transfer ribonucleic acids, in: Methods in Enzymology, Vol. 20 (S. P. Colowick and N. D. Kaplan, eds.), p. 3, Academic Press, New York.Google Scholar
  75. Kennedy, E. P., Rumley, M. K., and Armstrong, J. B., 1974, Direct measurement of the binding of labeled sugars to the lactose permease M protein, J. Biol. Chem. 249:33.PubMedGoogle Scholar
  76. Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol Chem. 247:7257.Google Scholar
  77. Klein, W. L., Dahms, A. S., and Boyer, P. D., 1970, The nature of the coupling of oxidative energy to amino acid transport, Fed. Proc. 28:341, No. 540.Google Scholar
  78. Klotz, I. M., 1946, The application of the law of mass action to binding of proteins. Interactions with calcium, Arch. Biochem. 9:109.PubMedGoogle Scholar
  79. Klotz, I. M., and Hunston, D. L., 1971, Properties of graphical representations of multiple classes of binding sites, Biochemistry 10:3065.PubMedCrossRefGoogle Scholar
  80. Koshland, D. E., Jr., 1974, Chemotaxis as a model for sensory systems, FEBS Lett. 40:S3.PubMedCrossRefGoogle Scholar
  81. Koshland, D. E., Jr., and Neet, K. E., 1968, The catalytic and regulatory properties of enzymes, Ann. Rev. Biochem. 37:359.PubMedCrossRefGoogle Scholar
  82. Kreishman, G. P., Robertson, D. E., and Ho, C, 1973, PMR studies of the substrate induced conformational change of glutamine binding protein from E. coli, Biochem. Biophys. Res. Commun. 53:18.CrossRefGoogle Scholar
  83. Krichevsky, M. I., Zaveler, S. A., and Bulkeley, J., 1968, Computer-aided single and dual isotope channels ratio quench correction in liquid scintillation counting, Anal. Biochem. 22:442.PubMedCrossRefGoogle Scholar
  84. Kuno, H., and Kihara, K., 1967, Simple microassay of protein with membrane filters, Nature (London) 215:91 A.CrossRefGoogle Scholar
  85. Kustu, S. G., and Ames, G. F.-L., 1974, The histidine-binding protein J, a histidine transport component, has two different functional sites, J. Biol. Chem. 249:6976.PubMedGoogle Scholar
  86. Kuzuya, H., Bromwell, K., and Guroff, G., 1971, The phenylalanine-binding protein of Comamonas sp. (ATCC 11299a), J. Biol. Chem. 246:6371.PubMedGoogle Scholar
  87. Langridge, R., Shinagawa, H., and Pardee, A. B., 1970, Sulfate-binding protein from Salmonella typhimurium: Physical properties, Science 169:59.PubMedCrossRefGoogle Scholar
  88. Lee, M., and Oxender, D. L., 1972, unpublished observation.Google Scholar
  89. Lengeler, J., Hermann, K. O., Unsold, H. J., and Boos, W., 1971, The regulation of the ß-methylgalactoside transport system and of the galactose binding protein of Escherichia coli Kl2, Eur. J. Biochem. 19:457.PubMedCrossRefGoogle Scholar
  90. Lever, J. E., 1972a, Purification and properties of a component of histidine transport in Salmonella typhimurium: The histidine-binding protein J, J. Biol. Chem. 247:4317.PubMedGoogle Scholar
  91. Lever, J. E., 1972b, Quantitative assay of the binding of small molecules to protein: Comparison of dialysis and membrane filter assays, Anal. Biochem. 50:73.PubMedCrossRefGoogle Scholar
  92. Linn, E. C. C., 1970, The genetics of bacterial transport systems, Ann. Rev. Genet. 4:225.CrossRefGoogle Scholar
  93. Linn, E. C. C, 1971, The molecular basis of membrane transport systems, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 285–341, Academic Press, New York.Google Scholar
  94. Lotan, R., and Sharon, N., 1973, The fluorescence of wheat germ agglutinin and of its complexes with saccharides, Biochem. Biophys. Res. Commun. 55:1340.PubMedCrossRefGoogle Scholar
  95. Macnab, R. M., and Koshland, D. E., Jr., 1972, The gradient-sensing mechanism in bacterial Chemotaxis, Proc. Natl. Acad. Sci. USA 69:2509.PubMedCrossRefGoogle Scholar
  96. Malamy, M. H., and Horecker, B. L., 1964a, Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation, Biochemistry 3:1891.Google Scholar
  97. Malamy, M. H., and Horecker, B. L., 1964b, Purification and crystallization of the alkaline phosphatase of Escherichia coli, Biochemistry 3:1893.PubMedCrossRefGoogle Scholar
  98. March, S. C, Parikh, I., and Cuatrecasas, P., 1974, A simplified method for cyanogen bromide activation of agarose for affinity chromatography, Anal. Biochem. 60:149.PubMedCrossRefGoogle Scholar
  99. McGowan, E. B., Silhavy, T. J., and Boos, W., 1974, Involvement of a tryptophan residue in the binding site of Escherichia coli galactose-binding protein, Biochemistry 13:993.PubMedCrossRefGoogle Scholar
  100. Medveczky, N., and Rosenberg, H., 1969, The binding and release of phosphate by a protein isolated from Escherichia coli, Biochim. Biophys. Acta 192:369.CrossRefGoogle Scholar
  101. Medveczky, N., and Rosenberg, H., 1970, The phosphate-binding protein of Escherichia coli, Biochim. Biophys. Acta 211:158.CrossRefGoogle Scholar
  102. Miner, K. M., and Frank, L., 1974, Sodium-stimulated glutamate transport in osmotically shocked cells and membrane vesicles of Escherichia coli, J. Bacteriol. 117:1093.Google Scholar
  103. Mitchell, P., 1961, Biological Structure and Function, Vol. II (T. W. Goodwin and O. Lindberg, eds.), pp. 581–603, Academic Press, New York.Google Scholar
  104. Nakane, P. K., Nichoalds, G. E., and Oxender, D. L., 1968, Cellular localization of leucine-binding protein from Escherichia coli, Science 161:182.Google Scholar
  105. Neu, H. C., and Chou, J., 1967, Release of surface enzymes in Enterobacteriaceae by osmotic shock, J. Bacteriol. 94:1934.PubMedGoogle Scholar
  106. Neu, H. C., and Heppel, L. A., 1964a, On the surface location of enzymes in Escherichia coli, Biochem. Biophys. Res. Commun. 17:215.Google Scholar
  107. Neu, H. C., and Heppel, L. A., 1964b, The release of ribonuclease into the medium when Escherichia coli cells are converted to spheroplasts, J. Biol. Chem. 239:3893.PubMedGoogle Scholar
  108. Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240:3685.PubMedGoogle Scholar
  109. Neu, H. C, Ashman, D. F., and Price, T. D., 1967, Effect of ethylenediaminetetraacetic acid-tris(hydroxymethyl)amino methane on release of the acid-soluble nucleotide pool and on breakdown of ribosomal ribonucleic acid, J. Bacteriol. 93:1360.PubMedGoogle Scholar
  110. Nichol, L. W., Ogston, A. G., Winzor, D. J., and Sawyer, W. H., 1974, Evaluation of equilibrium constants by affinity chromatography, Biochem. J. 143:435.PubMedGoogle Scholar
  111. Nishimune, T., and Hayashi, R., 1971, Thiamine-binding protein and thiamine uptake by Escherichia coli, Biochim. Biophys. Acta 244:573.CrossRefGoogle Scholar
  112. Nossal, N. G., and Heppel, L. A., 1966, The release of enzymes by osmotic shock from Escherichia coli in exponential phase, J. Biol. Chem. 241:3055.PubMedGoogle Scholar
  113. Ohta, N., Galsworthy, P. R., and Pardee, A. B., 1971, Genetics of sulfate transport by Salmonella typhimurium, J. Bacteriol. 105:1053.Google Scholar
  114. Ordal, G. W., and Adler, J., 1974, Properties of mutants in galactose taxis and transport, J. Bacteriol. 117:517.PubMedGoogle Scholar
  115. Oshima, R. G., Willis, R. C., Furlong, C. E., and Schneider, J. A., 1974, Binding assays for amino acids: The utilization of a cystine binding protein from Escherichia coli for the determination of acid-soluble cystine in small physiological samples, J. Biol. Chem. 249:6033.PubMedGoogle Scholar
  116. Oxender, D. L., 1972a, Membrane transport, Ann. Rev. Biochem. 41:111.CrossRefGoogle Scholar
  117. Oxender, D. L., 1972b, Membrane transport, in: Metabolic Pathways, Vol. 6 (L. E. Hokin, ed.), Academic Press, New York.Google Scholar
  118. Oxender, D. L., 1974, Membrane transport proteins, in: Biomembranes, Vol. 5 (L. A. Manson, ed.), p. 25, Academic Press, New York.Google Scholar
  119. Oxender, D. L., 1975, Genetic approaches to the study of transport systems, in: Biological Transport (H. N. Christensen, ed.), Benjamin, New York.Google Scholar
  120. Oxender, D. L., and Quay, S. C., 1975, Binding proteins and transport, Ann. N.Y. Acad. Sci., in press.Google Scholar
  121. Pardee, A. B., 1966, Purification and properties of a sulfate-binding protein from Salmonella typhimurium, J. Biol. Chem. 241:5886.PubMedGoogle Scholar
  122. Pardee, A. B., 1967, Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium, Science 156:1627.PubMedCrossRefGoogle Scholar
  123. Pardee, A. B., 1968, Membrane transport proteins, Science 162:632.PubMedCrossRefGoogle Scholar
  124. Pardee, A. B., and Prestidge, L. S., 1966, Cell-free activity of a sulfate binding site involved in active transport, Proc. Natl. Acad. Sci. USA 55:189.PubMedCrossRefGoogle Scholar
  125. Pardee, A. B. and Watanabe, K., 1968, Location of sulfate-binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049.Google Scholar
  126. Pardee, A. B., Prestidge, L. S., Whipple, M. B., and Dreyfuss, J., 1966, A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium, J. Biol. Chem. 241:3962.Google Scholar
  127. Parsons, R. G., and Hogg, R. W., 1974a, Crystallization and characterization of the l-arabinose-binding protein of Escherichia coli B/r, J. Biol. Chem. 249:3602.PubMedGoogle Scholar
  128. Parsons, R. G., and Hogg, R. W., 1974b, A comparison of the L-arabinose- and D-galactose-binding proteins of Escherichia coli B/r, J. Biol. Chem. 249:3608.PubMedGoogle Scholar
  129. Penrose, W. R., Nichoalds, G. E. P., Piperno, J. R., and Oxender, D. L., 1968, Purification and properties of a leucine-binding protein from Escherichia coli, J. Biol. Chem. 243:5921.PubMedGoogle Scholar
  130. Piperno, J. R., and Oxender, D. L., 1966, Amino acid-binding protein released from Escherichia coli by osmotic shock, J. Biol. Chem. 241:5732.PubMedGoogle Scholar
  131. Privat, J. P., Delmotte, F., Mialonier, G., Bouchard, P., and Monsigny, M., 1974, Fluorescence studies of saccharide binding to wheat-germ agglutinin (lectin), Eur. J. Biochem. 47:5.PubMedCrossRefGoogle Scholar
  132. Quay, S. C, Oxender, D. L., Tsuyumu, S., and Umbarger, H. E., 1975, Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria, J. Bacteriol. 122:994.PubMedGoogle Scholar
  133. Quiocho, F., Phillips, G. N., Jr., Parsons, R. G., and Hogg, R. W., 1974, Crystallography data on an L-arabinose-binding protein from Escherichia coli, J. Mol. Biol. 86:491.PubMedCrossRefGoogle Scholar
  134. Rahmanian, M., and Oxender, D. L., 1972, Derepressed leucine transport activity in Escherichia coli, J. Supramol. Struct. 1:55.CrossRefGoogle Scholar
  135. Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coli K12, J. Bacteriol. 116:1258.PubMedGoogle Scholar
  136. Richarme, G., and Kepes, A., 1974, Release of glucose from purified galactose-binding protein of Escherichia coli upon addition of galactose, Eur. J. Biochem. 45:127.PubMedCrossRefGoogle Scholar
  137. Robbins, A. R., and Rotman, B., 1975, Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12, Proc. Natl. Acad. Sci. USA 72:423.PubMedCrossRefGoogle Scholar
  138. Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:138s.CrossRefGoogle Scholar
  139. Roseman, S., 1972a, Transport of carbohydrates by bacteria, in: Metabolic Pathways, Vol. 6 (L. E. Hokin, ed.), pp. 41–89, Academic Press, New York.Google Scholar
  140. Roseman, S., 1912b, A bacterial phosphotransferase system and its role in sugar transport, in: The Molecular Basis of Biological Transport, Vol. 3 (J. F. Woessner, Jr. and F. Huijing, eds.), pp. 181–218, Academic Press, New York.Google Scholar
  141. Rosen, B. P., 1971, Basic amino acid transport in Escherichia coli, J. Biol. Chem. 246: 3653.PubMedGoogle Scholar
  142. Rosen, B. P., 1973, Basic amino acid transport in Escherichia coli. II. Purification and properties of an arginine-specific binding protein, J. Biol. Chem. 248:1211.PubMedGoogle Scholar
  143. Rosen, B. P., and Heppel, L. A., 1973, Present status of binding proteins that are released from gram-negative bacteria by osmotic shock, in: Bacterial Membranes and Walls (L. Leive, ed.), pp. 209–239, Dekker, New York.Google Scholar
  144. Rosen, B. P., and Vasington, F. D., 1971, Purification and characterization of a histidine binding protein from Salmonella typhimurium LT2 and its relationship to the histi dine permease system, J. Biol. Chem. 246:5351.PubMedGoogle Scholar
  145. Roth, J. R., 1970, Genetic techniques in studies of bacterial metabolism, in: Methods in Enzymology, Vol. 17A (H. Tabor and C. W. Taylor, eds.), p. 3, Academic Press, New York.Google Scholar
  146. Rotman, B., and Ellis, J. H., Jr., 1972, Antibody-mediated modification of the binding properties of a protein related to galactose transport, J. Bacteriol. 111:791.PubMedGoogle Scholar
  147. Scatchard, G., 1949, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660.CrossRefGoogle Scholar
  148. Schleif, R., 1969, An L-arabinose-binding protein and arabinose permeation in Escherichia coli, J. Mol. Biol. 46:185.PubMedCrossRefGoogle Scholar
  149. Shaltiel, S., Ames, G. F.-L., and Noel, K. D., 1973, Hydrophobic chromatography in the purification of the histidine-binding protein J from Salmonella typhimurium, Arch. Biochem. Biophys. 159:174.PubMedCrossRefGoogle Scholar
  150. Silhavy, T. J., and Boos, W., 1975, The “hidden ligand” of the galactose binding protein, Eur. J. Biochem. 54:163.PubMedCrossRefGoogle Scholar
  151. Silhavy, T. J., Boos, W., and Kalckar, H. M, 1975a, The role of the galactose-binding protein in galactose transport and Chemotaxis, Mosbacher Colloquium, Germany.Google Scholar
  152. Silhavy, T. J., Szmelcman, S., Boos, W., and Schwartz, M., 19756, On the significance of the retention of ligand by protein, Proc. Natl. Acad. Sci. USA 72:2120.Google Scholar
  153. Simmons, S., and Toye, N. O., 1966, Peptidases in spheroplasts of Escherichia coli K12, J. Biol. Chem. 241:3852.Google Scholar
  154. Singer, S. J., 1974, The molecular organization of membranes, Ann. Rev. Biochem. 43:805.PubMedCrossRefGoogle Scholar
  155. Slayman, C. W., Genetic control of membrane transport, in: Current Topics in Membranes and Transport, Vol. 4 (A. Kleinzeller and F. Bronner, eds.), pp. 1–174, Academic Press, New York.Google Scholar
  156. Steers, E., Cuatrecasas, P., and Pollard, H. B., 1971, The purification of β-galactosidase from Escherichia coli by affinity chromatography, J. Biol. Chem. 246:196.PubMedGoogle Scholar
  157. Stuart, W. D., and DeBusk, A. G., 1971, Molecular transport. I. In vitro studies of isolated glycoprotein subunits of the amino acid transport system of Neurospora crassa conidia, Arch. Biochem. Biophys. 144:512.PubMedCrossRefGoogle Scholar
  158. Taylor, A. L., Norrel, S. A., and Hanna, M. L., 1972, Uptake of cyanocobalamin by Escherichia coli B: Some characteristics and evidence for a binding protein, Arch. Biochem. Biophys. 148:366.PubMedCrossRefGoogle Scholar
  159. Tsay, S.-S., Brown, K. K., and Gaudy, E. T., 1971, Transport of glycerol by Pseudomonas aeruginosa, J. Bacteriol. 108:82.PubMedGoogle Scholar
  160. Tso, W.-W., and Adler, J., 1974, Negative Chemotaxis in Escherichia coli, J. Bacteriol. 118:560.PubMedGoogle Scholar
  161. Vallee, B. L., and Riordan, J. F., 1969, Chemical approaches to the properties of active sites of enzymes, Ann. Rev. Biochem. 38:733.PubMedCrossRefGoogle Scholar
  162. Vesterberg, O., 1971, Isoelectric focusing of proteins, in: Methods in Enzymology, Vol. 22 (W. B. Jakoby, ed.), p. 389, Academic Press, New York.Google Scholar
  163. Wasserman, R. H., 1974, personal communication.Google Scholar
  164. Wasserman, R. H., and Corradino, R. A., 1973, Vitamin D, calcium, and protein synthesis, Vitam. Horm. N.Y. 31:43.CrossRefGoogle Scholar
  165. Wasserman, R. H., Corradino, R. A., and Taylor, A. N., 1968, Vitamin D-dependent calcium-binding protein: Purification and some properties, J. Biol. Chem. 243:3978.PubMedGoogle Scholar
  166. Weiner, J. H., and Heppel, L. A., 1971, A binding protein for glutamine and its relation to active transport in Escherichia coli, J. Biol. Chem. 246:6933.Google Scholar
  167. Wiley, W. R., 1970, Tryptophan transport in Neurospora crassa: A tryptophan-binding protein released by osmotic shock, J. Bacteriol. 103:656.PubMedGoogle Scholar
  168. Wilkinson, G. N., 1961, Statistical estimations in enzyme kinetics, Biochem. J. 80:324.PubMedGoogle Scholar
  169. Willis, R. C, and Furlong, C. E., 1974, Purification and properties of a ribose-binding protein from Escherichia coli, J. Biol. Chem. 249:6926.Google Scholar
  170. Willis, R. C, and Furlong, C. E., 1975, Purification and properties of a periplasmic glutamate-aspartate binding protein from E. coli K12 strain W3092, J. Biol. Chem. 250:2574.PubMedGoogle Scholar
  171. Willis, R. C, Morris, R. G., Cirakoglu, C, Shellenberg, G. D., Gerber, N. H., and Furlong, C. E., 1974, Preparation of the periplasmic binding proteins from Salmonella typhimurium and Escherichia coli, Arch. Biochem. Biophys. 161:64.CrossRefGoogle Scholar
  172. Willsky, G. R., Bennet, R. L., and Malamy, M. H., 1973, Inorganic phosphate transport in Escherichia coli: Involvement of two genes which play a role in alkaline phosphatase regulation, J. Bacteriol. 113:529.PubMedGoogle Scholar
  173. Wilson, D. B., 1974, Source of energy for the Escherichia coli galactose transport systems induced by galactose, J. Bacteriol. 120:866.PubMedGoogle Scholar
  174. Wilson, O. H., and Holden, J. T., 1969a, Arginine transport and metabolism in osmotic-ally shocked and unshocked cells of Escherichia coli W, J. Biol. Chem. 244:2737.PubMedGoogle Scholar
  175. Wilson, O. H., and Holden, J. T., 1969b, Stimulation of arginine transport in osmotically shocked Escherichia coli W cells by purified arginine-binding protein fractions, J. Biol. Chem. 244:2743.PubMedGoogle Scholar
  176. Wilson, T. H., Kashket, E., and Maloney, P., 1975, Methods for studying transport in bacteria, in : Methods in Membrane Biology, Vol. 4 (E. D. Korn, ed.), Plenum Press, New York.Google Scholar
  177. Wood, J. M., 1975, Leucine transport in Escherichia coli: The resolution of multiple transport systems and their coupling to metabolic energy, J. Biol. Chem. 250:4477.PubMedGoogle Scholar
  178. Zeppezauer, M., Eklund, H., and Zeppezauer, E. S., 1968, Microdiffusion cells for the growth of single protein crystals by means of equilibrium dialysis, Arch. Biochem. Biophys. 126:564.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Dale L. Oxender
    • 1
  • Steven C. Quay
    • 1
  1. 1.Department of Biological ChemistryThe University of MichiganAnn ArborUSA

Personalised recommendations