Methods in Membrane Biology pp 101-150 | Cite as
Methods of Isolation and Characterization of Bacterial Membranes
Abstract
It is now well documented that the major structural features (apart from size and shape) distinguishing prokaryotic bacterial cells from eukaryotic cells relate to the nature and organization of membrane systems, the nucleus, and the “packaging” of functions in membranous organelles. Anatomically, the majority of bacterial cells are relatively undifferentiated with respect to intracellular membrane-bound structures. Thus the bacterial nucleus lacks a nuclear membrane, there are no separate mitochondrial organelles, and the respiratory functions are localized in the multifunctional plasma membrane of the bacterial cell. A membranous endoplasmic reticulum similar to that of eukaryotic cells is not seen, although evidence has been presented for the organization of the ribosomes on a fine supporting structure or matrix of smaller dimensions (Schlessinger et al, 1965; van Iterson, 1965). Other membrane-bounded organelles such as the Golgi apparatus and lysosomes are absent, although there have been suggestions, along with a great number of others, that the mesosomes may fulfill some of these cellular functions (for review, see Ellar, 1970; Stanier, 1970; Salton, 1971a,b; Ghosh, 1974).
Keywords
Outer Membrane Membrane Fraction Bacterial Membrane Bacillus Megaterium Purple MembranePreview
Unable to display preview. Download preview PDF.
References
- Abrams, A., 1958, O-Acetyl groups in the cell wall of Streptococcus faecalis, J. Biol. Chem. 230:949–959.PubMedGoogle Scholar
- Abrams, A., 1965, The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of the solubilized enzyme, J. Biol. Chem. 240:3675–3681.PubMedGoogle Scholar
- Andreoli, A. J., Saranto, J., Baecker, P. A., Suehiro, S., Escamilla, E., and Steiner, A., 1975, Biochemical properties of forespores isolated from Bacillus cereus, in: Spores VI (P. Gerhardt, R. N. Costilow, and H. L. Sadoff, eds.), pp. 418–424, American Society for Microbiology.Google Scholar
- Araki, Y., Nakatani, T., Nakayama, K., and Ito, E., 1972, Occurrence of iV-nonsubstitut-ed glucosamine residue in peptidoglycan of lysozyme-resistant cell walls from Bacillus cereus, J. Biol. Chem. 247:6312–6321.Google Scholar
- Bayer, M. E., 1968, Areas of adhesion between wall and membrane of Escherichia coli, J. Gen. Microbiol. 53:395–404.PubMedGoogle Scholar
- Bell, R. M., Mavis, R. D., Osborn, M. J., and Vagelos, P. R., 1971, Enzymes of phospholipid metabolism: Loc alization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium, Biochim. Biophys. Acta 249:628–635.PubMedGoogle Scholar
- Benedetti, E. L., and Emmelot, P., 1968, Structure and function of plasma membranesisolated from liver, in : The Membranes, Vol. 4 (A. J. Dalton and F. Haguenau, eds.), pp. 33–120, Academic Press, New York.Google Scholar
- Birdsell, D. C, and Cota-Robles, E. H., 1967, Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli,J. Bacteriol 93:421–411.Google Scholar
- Blaurock, A. E., and Stoeckenius, W., 1971, Structure of the purple membrane, Nature (London), New Biol. 233:152–154.Google Scholar
- Braun, V., and Hantke, K., 1974, Biochemistry of bacterial cell envelopes, Ann. Rev. Biochem. 43:89–121.PubMedGoogle Scholar
- Bretscher, M. S., 1972, Asymmetrical lipid bilayer structure for biological membranes, Nature (London), New Biol. 236:11–12.Google Scholar
- Briles, E., 1974, Studies on the teichoic acids of the pneumococcus, Ph. D. thesis, Rockefeller University, New York.Google Scholar
- Browder, H. P., Zygmunt, W. A., Young, J. R., and Tavormina, P. A., 1965, Lysostaphin: Enzymatic mode of action, Biochem. Biophys. Res. Commun. 19:383–389.PubMedGoogle Scholar
- Brown, A. D., Shorey, C. D., and Turner, H. P., 1965, An alternative method of isolating the membrane of a halophilic bacterium, J. Gen. Microbiol. 41:225–231.PubMedGoogle Scholar
- Brumfitt, W., Wardlaw, A. C, and Park, J. T., 1958, Development of lysozyme resistance in Micrococcus lysodeikticus and its association with an increased O-acetyl content of the cell wall, Nature (London), 181:1783–1784.Google Scholar
- Cho, K. Y., Pope, L., and Wyss, O., 1974, Formation of protoplasts in Azotobacter vinelandii,Arch. Microbiol. 101:337–342.PubMedGoogle Scholar
- Cohen-Bazire, G., and Kunisawa, R., 1963, The fine structure of Rhodospirillum rubrum,J. Cell Biol. 16:401–419.PubMedGoogle Scholar
- Coyette, J., and Shockman, G. D., 1973, Some properties of the autolytic N-acetylmuramidase of Lactobacillus acidophilus, J. Bacteriol. 114:34–41.PubMedGoogle Scholar
- Daniels, M. J., 1969, Lipid synthesis in relation to the cell cycle of Bacillus megaterium KM and Escherichia coli, Biochem. J. 115:697–701.Google Scholar
- DeKruyff, B., Demel, R. A., and van Deenen, L. L. M., 1972, The effect of cholesterol and epicholesterol incorporation on the permeability and on the phase transition of intact Acholeplasma laidlawii cell membranes and derived liposomes, Biochim. Biophys. Acta 255:331–347.Google Scholar
- DePamphilis, M. L., 1971, Dissociation and reassembly of Escherichia coli outer membrane and of lipopolysaccharide, and their reassembly onto flagellar basal bodies, J. Bacteriol. 105:1184–1199.PubMedGoogle Scholar
- De Petris, S., 1967, Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituent layers, J. Ultrastruct. Res. 19:45–83.PubMedGoogle Scholar
- De Siervo, A. J., and Salton, M. R. J., 1971, Biosynthesis of cardiolipin in the membranes of Micrococcus lysodeikticus, Biochim. Biophys. Acta 239:280–292.PubMedGoogle Scholar
- De Voe, I. W., Thompson, J., Costerton, J. W., and MacLeod, R. A., 1970, Stability and comparative transport capacity of cells, mureinoplasts, and true protoplasts of a gram-negative bacterium, J. Bacteriol. 101:1014–1026.PubMedGoogle Scholar
- Ellar, D. J., 1970, The biosynthesis of protective surface structures of prokaryotic and eukaryotic cells, in: Organization and Control in Prokaryotic and Eukaryotic Cells (H. P. Charles and B. C. J. G. Knight, eds.), pp. 167–202, Cambridge University Press, London.Google Scholar
- Ellar, D. J., and Freer, J. H., 1969, The isolation and characterization of mesosome material from Micrococcus lysodeikticus, J. Gen. Microbiol. 58:vii.PubMedGoogle Scholar
- Ellar, D. J., Thomas, T. D., and Postgate, J. A., 1971, Properties of mesosomal membranes isolated from Micrococcus lysodeikticus and Bacillus megaterium,Biochem. J. 122:44P.PubMedGoogle Scholar
- Ellar, D. J., Eaton, M. W., Hogarth, C., Wilkinson, B. J., Deans, J., and La Nauze, J., 1975, Comparative biochemistry and function of forespore and mother-cell compartments during sporulation of Bacillus megaterium cells, in : Spores VI (P. Gerhardt, R. N. Costilow, and H. L. Sadoff, eds.), pp. 425–433, American Society for Microbiology.Google Scholar
- Ensign, J. C, and Wolfe, R. S., 1966, Characterization of a small proteolytic enzyme which lyses bacterial cell walls, J. Bacteriol. 91:524–534.PubMedGoogle Scholar
- Ferrandes, B., Chaix, P., and Ryter, 1966, Localization des cytochromes de Bacillus subtilis dans les structures mésosomiques, C. R. Acad. Sci. 263:1632–1635.Google Scholar
- Fitz-James, P. C, 1960, Participation of the cytoplasmic membrane in the growth and spore formation of bacilli, J. Biophys. Biochem. Cytol. 8:507–528.PubMedGoogle Scholar
- Fitz-James, P. C, 1967, A functional and structural comparison of separated fractions of mesosomes and plasma membrane of bacteria, Protides Biol. Fluids 15:289–301.Google Scholar
- Fooke-Achterrath, M., Lickfeld, K. G., Reusch, V. M., Jr., Aebi, U., Tschöpe, U., and Menge, B., 1974, Close-to-life preservation of Staphylococcus aureus mesosomes for transmission electron microscopy, J. Ultrastruct. Res. 49:270–285.PubMedGoogle Scholar
- Fraker, P. J., and Kaplan, S., 1971, Isolation and fractionation of the photosynthetic membranous organelles from Rhodopseudomonas spheroides,J. Bacteriol. 108:465–473.PubMedGoogle Scholar
- Frehel, C., Ferrandes, B., and Ryter, A., 1971, Réactions d’oxidoréduction au niveau des membranes cytoplasmiques et mésosomiques de Bacillus subtilis, Biochim. Biophys. Acta 234:226–241.Google Scholar
- Ghosh, B. K., 1974, The mesosome—A clue to the evolution of the plasma membrane, Sub-Cell. Biochem. 3:311–367.Google Scholar
- Ghosh, B. K., and Murray, R. G. E., 1969, Fractionation and characterization of the plasma and mesosome membrane of Listeria monocytogenes,J. Bacteriol. 97:426–440.PubMedGoogle Scholar
- Ghuysen, J.-M., 1968, Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism, Bacteriol. Rev. 32:425–464.PubMedGoogle Scholar
- Gibson, K. D., Segen, B. J., and Niederman, R. A., 1972. Membranes of Rhodopseudomonas spheroides. II. Precursor-product relations in anaerobically growing cells, Arch. Biochem. Biophys. 152:561–568.PubMedGoogle Scholar
- Glauert, A. M., and Thornley, M. J., 1969, The topography of the bacterial cell wall, Ann. Rev. Microbiol. 23:159–198.Google Scholar
- Gorchein, A., Neuberger, A., and Tait, G. H., 1968, The isolation and characterization of subcellular fractions from pigmented and unpigmented cells of Rhodopseudomonas spheroides,Proc. Roy. Soc. London Ser. B170:229–246.Google Scholar
- Gray, G. W., and Thurman, P. F., 1967, A membrane fraction obtained by disintegration of cells of Pseudomonas aeruginosa, Biochim. Biophys. Acta 135:947–958.PubMedGoogle Scholar
- Greenawalt, J. W., 1974, The isolation of outer and inner mitochondrial membranes, in: Methods in Enzymology, Vol. 31 (S. P. Colowick and N. O. Kaplan, eds.), pp. 310–323, Academic Press, New York.Google Scholar
- Hash, J. H., Wishnick, M., and Miller, P. A., 1964, Formation of “protoplasts” of Staphylococcus aureus with a fungal N-acetylhexosaminidase, J. Bacteriol. 87:432–437.PubMedGoogle Scholar
- Hendler, R. W., 1968, Protein Biosynthesis and Membrane Biochemistry, p. 296, Wiley, New York.Google Scholar
- Higgins, M. L., and Shockman, G. D., 1971, Procaryotic cell division with respect to wall and membranes, CRC Crit. Rev. Microbiol. 1:29–72.PubMedGoogle Scholar
- Hirachi, Y., Kotani, S., Suginaka, H., and Kato, K., 1971, Preparation of cytoplasmic membranes of Staphylococcus aureus FDA209P through protoplasts made with the L-11 enzyme and a preliminary analysis of membrane antigens, Biken J. 14:11–28.PubMedGoogle Scholar
- Holt, S. C., and Marr, A. G., 1965, Isolation and purification of the intracytoplasmic membranes of Rhodospirillum rubrum, J. Bacteriol. 89:1413–1420.PubMedGoogle Scholar
- Huang, J. W., and Kaplan, S., 1973, Membrane proteins of Rhodopseudomonas spheroides. III. Isolation, purification, and characterization of cell envelope proteins, Biochim. Biophys. Acta 307:301–316.PubMedGoogle Scholar
- Hughes, D. E., 1962, The bacterial cytoplasmic membrane, J. Gen. Microbiol. 29:39–46.PubMedGoogle Scholar
- Johnston, K. H., and Gotschlich, E. C., 1974, Isolation and characterization of the outer membrane of Neisseria gonorrhoeae, J. Bacteriol. 119:250–257.PubMedGoogle Scholar
- Joseph, R., and Shockman, G. D., 1974, Autolytic formation of protoplasts (autoplasts) of Streptococcus faecalis 9790: Release of cell wall, autolysin and formation of stable autoplasts, J. Bacteriol. 118:735–746.PubMedGoogle Scholar
- Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367–416.PubMedGoogle Scholar
- Kato, K., Matsubara, T., Mori, Y., and Kotani, S., 1960, “Protoplast” formation in Staphylococcus aureus using the lytic enzyme produced by a Flavobacterium,Biken J. 3:201–203.Google Scholar
- Kellenberger, E., and Ryter, A., 1958, Cell wall and cytoplasmic membrane of Escherichia coli,J. Biophys. Biochem. Cytol. 4:323–326.PubMedGoogle Scholar
- Ketchum, P. A., and Holt, S. C, 1970, Isolation and characterization of the membranes from Rhodospirillum rubrum, Biochim. Biophys. Acta 196:141–161.PubMedGoogle Scholar
- Knox, K. W., and Wicken, A. J., 1973, Immunological properties of teichoic acids, Bacteriol. Rev. 37:215–257.PubMedGoogle Scholar
- Lascelles, J., 1968, The bacterial photosynthetic apparatus, in : Advances in Microbial Physiology, Vol. 2 (A. H. Rose and J. F. Wilkinson, eds.), pp. 1–42, Academic Press, New York.Google Scholar
- Leive, L., 1974, The barrier function of the gram-negative envelope, Ann. N.Y. Acad. Sci. 235:109–127.PubMedGoogle Scholar
- Litwack, G., and Pramer, D., 1956, Growth of Micrococcus lysodeikticus as substrate for lysozyme, Proc. Soc. Exp. Biol. Med. 91:290–294.PubMedGoogle Scholar
- MacKenzie, C. R., and Jordan, D. C., 1973, The isolation of the plasma membrane from a gram-negative organism, Prep. Biochem. 3:1–11.PubMedGoogle Scholar
- Martin, E. L., and MacLeod, R. A., 1971, Isolation and chemical composition of the cytoplasmic membrane of a gram-negative bacterium, J. Bacteriol. 105:1160–1167.PubMedGoogle Scholar
- McQuillen, K., 1960, Bacterial protoplasts, in: The Bacteria, Vol. 1 (I. C. Gunsalus and R. Y. Stanier, eds.), pp. 249–359, Academic Press, New York.Google Scholar
- Metcalf, R. H., and Deibel, R. H., 1969, Differential lytic response of enterococci associated with addition order of lysozyme and anions, J. Bacteriol. 99:674–680.PubMedGoogle Scholar
- Mirelman, D., and Sharon, N., 1972, Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin, Biochem. Biophys. Res. Commun. 46:1909–1917.PubMedGoogle Scholar
- Mirelman, D., Bracha, R., and Sharon, N., 1974, Studies on the elongation of bacterial cell wall peptidoglycan and its inhibition by penicillin, Ann. N. Y. Acad. Sci. 235: 326–344.PubMedGoogle Scholar
- Mitchell, P., and Moyle, J., 1957, Autolytic release and osmotic properties of “protoplasts” from Staphylococcus aureus, J. Gen. Microbiol. 16:184–194.PubMedGoogle Scholar
- Miura, T., and Mizushima, S., 1969, Separation and properties of outer and cytoplasmic membranes in Escherichia coli, Biochim. Biophys. Acta 193:268–276.PubMedGoogle Scholar
- Mizushima, S., and Yamada, H., 1975, Isolation and characterization of two outer membrane preparations from Escherichia coli, Biochim. Biophys. Acta 375:44–53.PubMedGoogle Scholar
- Mosser, J. L., and Tomasz, A., 1970, Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme, J. Biol. Chem. 245:287–298.PubMedGoogle Scholar
- Muñoz, E., Nachbar, M. S., Schor, M. T., and Salton, M. R. J., 1968, Adenosine-triphosphatase of Micrococcus lysodeikticus: Selective release and relationship to membrane structure, Biochem. Biophys. Res. Commun. 32: 539–546.PubMedGoogle Scholar
- Muñoz, E., Salton, M. R. J., Ng, M. H., and Schor, M. T., 1969, Membrane adenosine triphosphatase of Micrococcus lysodeikticus: Purification, properties of the “soluble” enzyme and properties of the membrane-bound enzyme, Eur. J. Biochem. 7:490–501.PubMedGoogle Scholar
- Murray, R. G. E., 1963, On the cell wall structure of Spirillum serpens,Can. J. Microbiol. 9:381–392.Google Scholar
- Murray, R. G. E., 1968, Bacterial cell wall anatomy in relation to the formation of spheroplasts and protoplasts, in: Microbial Protoplasts, Spheroplasts and L-forms (L. B. Guze, ed.), pp. 1–16, Williams and Wilkins, Baltimore.Google Scholar
- Murray, R. G. E., Steed, P., and Elson, H. E., 1965, The location of the mucopeptide in sections of the cell wall of Escherichia coli and other gram-negative bacteria, Can. J. Microbiol. 11:547–560.PubMedGoogle Scholar
- Nachbar, M. S., and Salton, M. R. J., 1970a, Characteristics of lipid-rich NADH dehy-drogenase-containing particulate fraction obtained from Micrococcus lysodeikticus membranes, Biochim. Biophys. Acta 223:309–320.PubMedGoogle Scholar
- Nachbar, M. S., and Salton, M. R. J., 1970a, Dissociation of functional markers in bacterial membranes, in: Surface Chemistry of Biological Systems, pp. 175–190, Plenum Press, New York.Google Scholar
- Neujahr, H. Y., Börstad, B., and Logardt, I.-M., 1973, Factors affecting the resistance of Lactobacillus fermenti to lysozyme, J. Bacteriol. 116:694–698.PubMedGoogle Scholar
- Niederman, R. A., and Gibson, K. D., 1971, The separation of chromatophores from the cell envelope in Rhodopseudomonas spheroides, Prep. Biochem. 1:141–150.PubMedGoogle Scholar
- Niederman, R. A., Segen, B. J., and Gibson, K. D., 1972, Membranes of Rhodopseudomonas spheroides. I. Isolation and characterization of membrane fractions from extracts of aerobically and anaerobically grown cells, Arch. Biochem. Biophys. 152: 547–560.PubMedGoogle Scholar
- Nugent, K. M., Huff, E., Cole, R. M., and Theodore, T. S., 1974, Cellular location of degradative enzymes in Staphylococcus aureus, J. Bacteriol. 120:1012–1016.PubMedGoogle Scholar
- Oelze, J., and Drews, G., 1972, Membranes of photosynthetic bacteria, Biochim. Biophys. Acta 265:209–239.PubMedGoogle Scholar
- Oelze, J., Biedermann, M., and Drews, G., 1969, Die Morphogenese des Photosynthese-apparates von Rhodospirillum rubrum. I. Die Isolierung und Charakterisierung von zwei Membransystemen, Biochim. Biophys. Acta 173:436–447.PubMedGoogle Scholar
- Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature (London), New Biol. 233:149–152.Google Scholar
- Oesterhelt, D., and Stoeckenius, W., 1974, Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, in : Methods in Enzymology, Vol. 31 (S. P. Colowick and N. O. Kaplan, eds.), pp. 667–678, Academic Press, New York.Google Scholar
- Ohye, D. F., and Murrell, W. G., 1962, Formation and structure of the spore of Bacillus coagulans, J. Cell Biol. 14:111–123.Google Scholar
- Op den Kamp, J. A. F., van Iterson, W., and van Deenen, L. L. M., 1967, Studies on the phospholipids and morphology of protoplasts of Bacillus megaterium, Biochim. Bio-phys. Acta 135:862–884.Google Scholar
- Op den Kamp, J. A. F., Bonsen, P. P. M., and van Deenen, L. L. M., 1969, Structural investigations of glucosaminyl phosphatidylglycerol from Bacillus megaterium,Biochim. Biophys. Acta 176:298–305.Google Scholar
- Oppenheim, J. D., and Salton, M. R. J., 1973, Localization and distribution of Micrococcus lysodeikticus membrane ATPase determined by ferritin labeling, Biochim. Biophys. Acta 298:297–322.PubMedGoogle Scholar
- Osborn, M. J., and Munson, R., 1974, Separation of the inner (cytoplasmic) and outer membranes of gram-negative bacteria, in: Methods in Enzymology, Vol. 31 (S. P. Colowick and N. O. Kaplan, eds.), pp. 642–653, Academic Press, New York.Google Scholar
- Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J., 1972a, Mechanism of assembly of the outer membrane of Salmonella typhimurium, J. Biol. Chem. 247:3962–3972.PubMedGoogle Scholar
- Osborn, M. J., Gander, J. E., and Parisi, E., 1972b, Mechanism of assembly of the outer membrane of Salmonella typhimurium: Site of synthesis of lipopolysaccharide, J. Biol. Chem. 247:3973–3986.PubMedGoogle Scholar
- Owen, P., and Freer, J. H., 1972, Isolation and properties of mesosomal membrane fractions from Micrococcus lysodeikticus, Biochem. J. 129:907–917.PubMedGoogle Scholar
- Owen, P., and Salton, M. R. J., 1975a, Use of lectin concanavalin A in the preparation of mesosomal membrane fractions from Micrococcus lysodeikticus,Microbios 13:27–39.Google Scholar
- Owen, P., and Salton, M. R. J., 1975a, A succinylated mannan in the membrane system of Micrococcus lysodeikticus, Biochem. Biophys. Res. Commun. 63:875–880.PubMedGoogle Scholar
- Patch, C. T., and Landman, O., 1971, Comparison of the biochemistry and rates of synthesis of mesosomal and peripheral membranes in Bacillus subtilis,J. Bacteriol. 107:345–357.PubMedGoogle Scholar
- Pollock, J. J., Nguyen-Disteche, M., Ghuysen, J.-M., Coyette, J., Linder, R., Salton, M. R. J., Kim, K. S., Perkins, H. R., and Reynolds, P., 1974, Fractionation of the DD-carboxypeptidase activities solubilized from membranes of Escherichia coli K12, strain 44, Eur. J. Biochem. 41:439–446.PubMedGoogle Scholar
- Pontefract, R. D., Bergeron, G., and Thatcher, F. S., 1969, Mesosomes in Escherichia coli,J. Bacteriol. 97: 367–375.PubMedGoogle Scholar
- Popkin, T. J., Theodore, T. S., and Cole, R. M., 1971, Electron microscopy during release and purification of mesosomal vesicles and protoplast membranes from Staphylococcus aureus,J. Bacteriol. 107:907–917.PubMedGoogle Scholar
- Razin, S., 1973, Physiology of mycoplasmas, Adv. Microb. Physiol. 10:1–80.PubMedGoogle Scholar
- Reaveley, D. A., 1968, The isolation and characterization of cytoplasmic membrane and mesosomes of Bacillus licheniformis 6346, Biochem. Biophys. Res. Commun. 30:649–655.PubMedGoogle Scholar
- Reaveley, D. A., and Rogers, H. J., 1969, Some enzymatic activities and chemical properties of the mesosomes and cytoplasmic membranes of Bacillus licheniformis 6346, Biochem. J. 113:67–79.PubMedGoogle Scholar
- Remsen, C. C, and Watson, S. W., 1972, Freeze-etching of bacteria, Int. Rev. Cytol. 33: 253–296.PubMedGoogle Scholar
- Remsen, C. C., Valois, F. W., and Watson, S. W., 1967, Fine structure of the cytomembranes of Nitrosocystis oceanus, J. Bacteriol. 94:422–433.PubMedGoogle Scholar
- Repaske, R., 1956, Lysis of gram-negative bacteria by lysozyme, Biochim. Biophys. Acta 22:189–191.PubMedGoogle Scholar
- Reusch, Jr., V. M., and Burger, M. M., 1973, The bacterial mesosome, Biochim. Biophys. Acta 300:79–104.PubMedGoogle Scholar
- Salton, M. R. J., 1956, Studies of the bacterial cell wall. V. The action of lysozyme on cell walls of some lysozyme-sensitive bacteria, Biochim. Biophys. Acta 22:495–506.PubMedGoogle Scholar
- Salton, M. R. J., 1958, The lysis of microorganisms by lysozyme and related enzymes, J. Gen. Microbiol. 18:481–490.PubMedGoogle Scholar
- Salton, M. R. J., 1960, Surface layers of the bacterial cell, in: The Bacteria, Vol. 1 (I. C. Gunsalus and R. Y. Stanier, eds.), pp. 97–151, Academic Press, New York.Google Scholar
- Salton, M. R. J., 1961, The anatomy of the bacterial surface, Bacteriol. Rev. 25:77–99.PubMedGoogle Scholar
- Salton, M. R. J., 1964, The Bacterial Cell Wall, Elsevier, Amsterdam.Google Scholar
- Salton, M. R. J., 1967a, Isolation and characterization of bacterial membranes, Trans. N.Y. Acad. Sci. Ser. II 29:764–781.Google Scholar
- Salton, M. R. J., 1967a, Structure and composition of bacterial membranes, Protides Biol. Fluids 15:279–288.Google Scholar
- Salton, M. R. J., 1967c, Structure and function of bacterial cell membranes, Ann. Rev. Microbiol. 21:417–442.Google Scholar
- Salton, M. R. J., 1911a, The bacterial membrane, in: Biomembranes, Vol. 1 (L. A. Manson, ed.), pp. 1–65, Plenum Press, New York.Google Scholar
- Salton, M. R. J., 1971a, Bacterial membranes, CRC Crit. Rev. Microbiol. 1:161–197.PubMedGoogle Scholar
- Salton, M. R. J., 1974a, Isolation of cell walls from gram-positive bacteria, in: Methods in Enzymology, Vol. 31 (S. P. Colowick and N. O. Kaplan, eds.), pp. 653–667, Academic Press, New York.Google Scholar
- Salton, M. R. J., 1914b, Membrane associated enzymes in bacteria, in: Advances in Microbial Physiol., Vol. 11 (A. H. Rose and D. W. Tempest, eds.), pp. 213–283, Academic Press, London.Google Scholar
- Salton, M. R. J., and Ehtisham-Ud-Din, A. F. M., 1965. The localization of cytochromes and carotenoids in isolated bacterial membranes and envelopes, Aust. J. Exp. Biol. Med. Sci. 43:255–264.PubMedGoogle Scholar
- Salton, M. R. J., and Freer, J. H., 1965, Composition of the membranes isolated from several gram-positive bacteria, Biochim. Biophys. Acta 107:531–538.PubMedGoogle Scholar
- Salton, M. R. J., and Home, R. W., 1951, Studies of the bacterial cell wall. II. Methods of preparation and some properties of cell walls, Biochim. Biophys. Acta 7:177–197.PubMedGoogle Scholar
- Salton, M. R. J., and Nachbar, M. S., 1970, Structure and functional organization of Micrococcus lysodeikticus membrane, in: Autonomy and Biogenesis of Mitochondria and Chloroplasts (N. K. Boardman, A. W. Linnane, and R. M. Smillie, eds.), pp. 42–52, North-Holland, Amsterdam.Google Scholar
- Salton, M. R. J., and Netschey, A., 1965, Physical chemistry of isolated bacterial membranes, Biochim. Biophys. Acta 107:539–545.PubMedGoogle Scholar
- Salton, M. R. J., and Pavlik, J. G., 1960, Studies of the bacterial cell wall. VI. Wall composition and sensitivity to lysozyme, Biochim. Biophys. Acta 39:398–407.PubMedGoogle Scholar
- Salton, M. R. J., and Schmitt, M. D., 1967, Effects of diphenylamine on carotenoids and menaquinones in bacterial membranes, Biochim. Biophys. Acta 135:196–207.PubMedGoogle Scholar
- Salton, M. R. J., and Schor, M. T., 1972, Subunit structure and properties of two forms of adenosine triphosphatase released from Micrococcus lysodeikticus membranes, Biochem. Biophys. Res. Commun. 49:350–357.PubMedGoogle Scholar
- Salton, M. R. J., Schmitt, M. D., and Trefts, P. E., 1967, Fractionation of isolated bacterial membranes, Biochem. Biophys. Res. Commun. 29:728–733.PubMedGoogle Scholar
- Salton, M. R. J., Freer, J. H., and Ellar, D. J., 1968, Electron transport components localized in a lipid-depleted sheet isolated from Micrococcus lysodeikticus membranes by deoxycholate extraction, Biochem. Biophys. Res. Commun. 33:909–915.PubMedGoogle Scholar
- Schachman, H. K., Pardee, A. B., and Stanier, R. Y., 1952, Studies on the macromolecular organization of microbial cells, Arch. Biochem. Biophys. 38:245–260.PubMedGoogle Scholar
- Schindler, C. A., and Schuhardt, V. T., 1964, Lysostaphin: A new bacteriolytic agent for the Staphylococcus,Proc. Natl. Acad. Sci. USA 51:414–421.PubMedGoogle Scholar
- Schlessinger, D., Marchesi, V. T., and Kwan, B. C. K., 1965, Binding of ribosomes to cytoplasmic reticulum of Bacillus megaterium, J. Bacteriol. 90:456–466.PubMedGoogle Scholar
- Schnaitman, C. A., 1970, Protein composition of the cell wall and cytoplasmic membrane of Escherichia coli, J. Bacteriol. 104:890–901.PubMedGoogle Scholar
- Schnaitman, C. A., 1971, Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100, J. Bacteriol. 108:545–552.PubMedGoogle Scholar
- Schnaitman, C. A., 1973, Outer membrane proteins of Escherichia coli. II. Heterogeneity of major outer membrane polypeptides, Arch. Biochem. Biophys. 157:553–560.PubMedGoogle Scholar
- Schnaitman, C, and Greenawalt, J. W., 1966, Intracytoplasmic membranes in Escherichia coli,J. Bacteriol. 92:780–783.PubMedGoogle Scholar
- Schuhardt, V. T., and Klesius, P. H., 1968, Osmotic fragility and viability of lysostaphininduced staphylococcal spheroplasts, J. Bacteriol. 96:734–737.PubMedGoogle Scholar
- Steck, T. L., 1972, Membrane isolation, in: Membrane Molecular Biology (C. F. Fox and A. D. Keith, eds.), pp. 76–114, Sinauer Associates, Stamford, Conn.Google Scholar
- Stanier, R. Y., 1970, Some aspects of the biology of cells and their possible evolutionary significance, in : Organization and Control in Prokaryotic and Eukaryotic Cells (H. P. Charles and B. C. J. G. Knight, eds.), pp. 1–38, Cambridge University Press, London.Google Scholar
- Takacs, B. J., and Holt, S. C, 1971, Thiocapsa floridana; a cytological, physical and chemical characterization. II. Physical characteristics of isolated and reconstituted chromatophores, Biochim. Biophys. Acta 233:278–295.PubMedGoogle Scholar
- Theodore, T. S., Popkin, T. J., and Cole, R. M., 1971, The separation and isolation of plasma membranes and mesosomal vesicles from Staphylococcus aureus, Prep. Biochem. 1:233–248.PubMedGoogle Scholar
- Theodore, T. S., Cole, R. M., and Huff, E., 1974, Localization of glycerol phosphate in mesosomal vesicles of Staphylococcus aureus, Biochem. Biophys. Res. Commun. 59:215–220.PubMedGoogle Scholar
- Tillack, T. W., Carter, R., and Razin, S., 1970, Native and reformed Mycoplasma laidlawii membranes compared by freeze-etching, Biochim. Biophys. Acta 219:123–130.PubMedGoogle Scholar
- Tremblay, G. Y., Daniels, M. J., and Schaechter, M., 1969, Isolation of a cell membrane-DNA-nascent RNA complex from bacteria, J. Mol. Biol. 40:65–76.PubMedGoogle Scholar
- van Iterson, W., 1965, Symposium on the fine structure and replication of bacteria and their parts. II. Bacterial cytoplasm, Bacteriol. Rev. 29:299–325.PubMedGoogle Scholar
- Vorbeck, M. L., and Marinetti, G. V., 1965, Intracellular distribution and characterization of the lipids of Streptococcus faecalis (ATCC 9790), Biochemistry 4:296–305.Google Scholar
- Wallach, D. F. H., 1967, Isolation of plasma membranes of animal cells, in: The Specificity of Cell Surfaces (B. D. Davis and L. Warren, eds.), pp. 129–163, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
- Ward, J. B., and Perkins, H. R., 1968, The chemical composition of the membranes of protoplasts and L-forms of Staphylococcus aureus, Biochem. J. 106:391–400.PubMedGoogle Scholar
- Watson, S. W., and Remsen, C. C., 1970, Cell envelope of Nitrosocystis oceanus,J. Ultrastruct. Res. 33:148–160.PubMedGoogle Scholar
- Weibull, C, 1953a, The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme, J. Bacteriol. 66:688–695.PubMedGoogle Scholar
- Weibull, C, 1953a, Characterization of the protoplasmic constituents of Bacillus megaterium, J. Bacteriol. 66:696–702.PubMedGoogle Scholar
- Weigand, R. A., Holt, S. C., Shively, J. M., Decker, G. L., and Greenawalt, J. W., 1973, Ultrastructural properties of the extra membranes of Escherichia coli 0111a as revealed by freeze-fracturing and negative-staining techniques, J. Bacteriol. 113:433–444.PubMedGoogle Scholar
- White, D. A., Albright, F. R., Lennarz, W. J., and Schnaitman, C. A., 1971, Distribution of phospholipid-synthesizing enzymes in the wall and membrane subfractions of the envelope of Escherichia coli,Biochim. Biophys. Acta 249:636–642.PubMedGoogle Scholar
- Wolf-Watz, H., Normark, S., and Bloom, G. D., 1973, Rapid method for isolation of large quantities of outer membrane from Escherichia coli K-12 and its application to the study of envelope mutants, J. Bacteriol. 115:1191–1197.PubMedGoogle Scholar
- Yem, D. W., and Wu, H. C, 1975, Purification properties and function of β-N-acetyl-glucosaminidase from Escherichia coli K-12, Ann. Meet. Am. Soc. Microbiol. abst. K114.Google Scholar
- Young, F. E., 1966, Fractionation and partial characterization of the products on autolysis of cell walls of Bacillus subtilis,J. Bacteriol. 92:839–846.PubMedGoogle Scholar