Metal Hydrides pp 145-176 | Cite as

An Introduction to Hydrogen in Alloys

  • D. G. Westlake
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)


Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: 1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, 2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, 3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, 4) “H trapping” in alloys of Group V metals and its effect on the terminal solubility for H (TSH), 5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and 6) “H-impurity complexes” in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented. Recent studies of resistivity and of elastic constants are summarized as just two examples of the important effects that interstitial hydrogen can have on the properties of metals and their alloys. Finally, a potential hydrogen storage material, ZrNi, is considered. From empirical rules, predictions are made regarding both the particular sites that can be occupied by hydrogen in this intermetallic compound and the resultant stoichiometries.


Hydrogen Embrittlement Solute Atom Hydride Phase Hydrogen Solubility Octahedral Interstice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Westlake, Enthalpy data for the zirconium-hydrogen system, J. Nuc Mat. 7: 346 (1962).CrossRefGoogle Scholar
  2. 2.
    T. Eguchi and S. Morozumi, Influence of alloying elements on the solubility of hydrogen in vanadium, J. Jap. Inst. Met. 38: 1025 (1974).Google Scholar
  3. 3.
    T. Eguchi and S. Morozumi, Solubility of hydrogen in molybdenum and its alloys, J. Jap. Inst. Met. 38: 1019 (1974).Google Scholar
  4. 4.
    J. F. Lynch, J. J. Reilly and F. Millot, The absorption of hydrogen by binary vanadium-chromium alloys, J. Phys. Chem. Solids 39: 883 (1978).CrossRefGoogle Scholar
  5. 5.
    R. Burch and N. B. Mason, The relative importance of geometric and electronic contributions to the thermodynamic properties of body-centered cubic metal hydrides, J. Less-Common Met. 63: 57 (1979).Google Scholar
  6. 6.
    Akihiko Inoue, Masahiro Katsura and Tadao Sano, The solubility of hydrogen in Nb-Mo alloy, J. Less-Common Met. 55: 9 (1977).CrossRefGoogle Scholar
  7. 7.
    D. W. Jones, N. Pessall and A. D. McQuillan, Correlation between magnetic susceptibility and hydrogen solubility in alloys of early transition elements, Phil. Mag. 6: 455 (1961).CrossRefGoogle Scholar
  8. 8.
    H. Katsuta and Rex B. McLellan, Thermodynamics of molybdenumniobium-hydrogen ternary solid solutions, J. Phys. Chem. Solids 40: 845 (1979).CrossRefGoogle Scholar
  9. 9.
    D. G. Westlake and J. F. Miller, Terminal solubility of hydrogen in Nb-Ta alloys and characterization of the solid solutions, J. Less-Common Met. 65: 139 (1979)CrossRefGoogle Scholar
  10. 10a.
    E. Veleckis and R. K. Edwards, Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen, J. Phys. Chem. 6: 83 (1969).Google Scholar
  11. 10b.
    O. J. Kleppa, P. Dantzer and M. E. Melnichak, High-temperature thermodynamics of the solid solutions of hydrogen in bcc vanadium, niobium and tantalum, J. Chem. Phys. 61: 4048 (1974).CrossRefGoogle Scholar
  12. 11.
    S. W. Stafford and Rex B. McLellan, The thermodynamic properties of the Fe-Ni-H ternary system, Acta Met. 24: 553 (1976).CrossRefGoogle Scholar
  13. 12.
    D. G. Westlake, A resistometric study of phase equilibria at low temperatures in the vanadium-hydrogen system, Trans. TMS-AIME 239: 1341 (1967).Google Scholar
  14. 13.
    T. Schober and A. Carl, A differential thermal analysis study of the vanadium-hydrogen system, Phys. Stat. Sol. 43: 443 (1977).CrossRefGoogle Scholar
  15. 14.
    D. H. Sherman, C. V. Owen and T. E. Scott, The effect of hydrogen on the structure and properties of vanadium, Trans. TMS-AIME 242: 1775 (1968).Google Scholar
  16. 15.
    G. Cannelli and R. Cantelli, A study of the effects of deuteride precipitation in tantalum by freqency and internal friction measurements, Appl. Phys. 3: 325 (1974).CrossRefGoogle Scholar
  17. 16.
    T. Matsumoto, Y. Sasaki, and M. Hihara, Interaction between interstitial hydrogen and substitutional solute atoms in solid solutions of niobium-base ternary alloys, J. Phys. Chem. Solids 36: 215 (1975).CrossRefGoogle Scholar
  18. 17.
    Takehiko Matsumoto, NMR study of interaction between interstitial hydrogen and substitutional vanadium atoms in niobium metal, J. Phys. Soc. Japan 42: 1583 (1977).CrossRefGoogle Scholar
  19. 18.
    Y. Sasaki and M. Amano, Hydrogen solubility and embrittlement in Nb-V, Nb-Mo and Nb-Ta alloys, in: Proceedings of the 2nd International Congress on Hydrogen in Metals“, Paris, Vol. 1, Pergamon Press, New York (1978).Google Scholar
  20. 19.
    S. Tanaka and H. Kimura, Solubility and diffusivity of hydrogen in vanadium and its alloys around room temperature, Trans. Japan Inst. Met 20: 647 (1979).Google Scholar
  21. 20.
    J. F. Miller and D. G. Westlake, Enhanced terminal solubilities for hydrogen in niobium alloyed with vanadium, titanium and molybdenum, Trans. Japan Inst. Met., 21: 153 (1980).Google Scholar
  22. 21.
    J. M. Corsan and A. J. Cook, Specific heat and superconductivity of binary alloys containing V, Nb, and Ta, Phys. Stat. Sol. 40: 657 (1970).CrossRefGoogle Scholar
  23. 22.
    P. S. Rudman, X-ray diffuse-scattering study of the Nb-Ti bcc solution, Acta Met. 12: 1381 (1964).CrossRefGoogle Scholar
  24. 23.
    Ya. S. Umanskii and V. I. Fadeeva, Peculiarities of the atomic structure of a Ta-Nb solid solution, Sov. Phys.Cryst. 11: 193 (1966).Google Scholar
  25. 24.
    Farid A. Khavadzha, V. M. Silonov and A. A. Katsnel’son, Short-range order in the systems Nb-V, Ta-V, and Nb-Ta, Sov. Phys. J. 20: 5 (1977).CrossRefGoogle Scholar
  26. 25.
    E. Colavita, A. Franciosi, R. Rosei, F. Sacchetti, E. S. Giuliano, R. Ruggeri, and D. W. Lynch, Electronic structure of Nb-Mo alloys, Phys. Rev. B22: 4864 (1979).Google Scholar
  27. 26.
    E. S. Black, D. W. Lynch and C. G. Olson, Optical properties (0.1–25 eV) of Nb-Mo and other Nb-based alloys, Phys. Rev. B16: 2337 (1977).CrossRefGoogle Scholar
  28. 27.
    G. C. Abell, Quasimolecular Jahn-Teller resonance states in the bcc metallic hydrides of vanadium, niobium, and tantalum, Phys. Rev. B, 20: 4773 (1979).CrossRefGoogle Scholar
  29. 28.
    Bohdan Stalinski and Bogdan Nowak, On the structure of titanium-niobium-hydrogen alloys, Bull. de l’Acad. Pol. des Sci., Ser. des sci. chim. 25: 451 (1977).Google Scholar
  30. 29.
    C. G. Chen and H. K. Birnbaum, Low-temperature H-0 and H-N relaxations, Phys. Stat. Sol 36: 687 (1976).CrossRefGoogle Scholar
  31. 30.
    K. Ozawa, S. Yamaguchi, Y. Fujino, O. Yoshinari, M. Koiwa and M. Hirabayashi, Channeling studies on the trapping of deuterium in vanadium by oxygen interstitials, Nucl. Instr. and Meth. 149: 405 (1978).CrossRefGoogle Scholar
  32. 31.
    M. A. Pick and D. O. Welch, Hydrogen absorption in the niobium-vanadium system, Z. für Phys. Chem. 114: 37 (1979).CrossRefGoogle Scholar
  33. 32.
    D. Richter, Hydrogen diffusion and trapping in bcc and fcc metals, Report No. BNL-26132 (1979).Google Scholar
  34. 33.
    G. Cannelli and R. Cantelli, Hydrogen diffusion in niobium-titanium alloys, in: “Proceedings of the 2nd International Congress on Hydrogen in Metals”, Paris, Vol. 1, Pergamon Press, New York 1978 ).Google Scholar
  35. 34.
    K. E. Blazek, The effect of a substitutional solute element on the diffusivity of an interstitial solute element in a dilute ternary alloy, Trans. Japan Inst. Met. 19: 253 (1978).Google Scholar
  36. 35.
    G. Cannelli and R. Cantelli, Anelasticity in niobium-titanium alloys, in: “Internal Friction and Ultrasonic Attenuation in Solids”, R. R. Hasiguti and Nobuo Mikoshiba, eds., University of Tokyo Press, Tokyo (1977).Google Scholar
  37. 36.
    H. Krjnmuller, B. Hohler, H. Schreyer and K. Vetter, Investigation of hydrogen-impurity complexes in transition metals, Phil. Mag. B37: 569 (1978).CrossRefGoogle Scholar
  38. 37.
    B. Hohler and H. Krönmuller, Investigation of hydrogen-impurity complexes in transition metals, Z.für Phys. Chem. 114: 93 (1979).CrossRefGoogle Scholar
  39. 38.
    E. S. Fisher, J. F. Miller, D. G. Westlake, and H. L. Alberts, to be published.Google Scholar
  40. 39.
    D. A. Armstrong and B. L. Mordike, The influence of alloying and temperature on the elastic constants of tantalum, J. Less-Common Met. 22: 265 (1970).CrossRefGoogle Scholar
  41. 40.
    E. S. Fisher, D. G. Westlake and S. T. Ockers, Effects of hydrogen and oxygen on the elastic moduli of vanadium, niobium, and tantalum single crystals, Phys. Stat. Sol. 28:591 (1975), and E. S. Fisher, Effects of hydrogen and UHV annealing on the elastic moduli of tantalum, Scripta Met. 11: 685 (1977).CrossRefGoogle Scholar
  42. 41.
    A. Magerl, B. Berre and G. Alefeld, Changes of the elastic constants of V, Nb, and Ta by hydrogen and deuterium, Phys. Stat. Sol. 36: 161 (1976).CrossRefGoogle Scholar
  43. 42.
    H. L. Alberts, E. S. Fisher, K. W. Katahara andGoogle Scholar
  44. M. H. Manghnani, The effect of hydrostatic pressure on the elastic constants of pure and hydrogenated single crystals of V and Nb53Ta47, J. Phys. F: Met. Phys. 9: L209 (1979).CrossRefGoogle Scholar
  45. 43.
    D. G. Westlake and J. F. Miller, Resistivity due to hydrogen in transition metal alloys, J. Phys. F: Met. Phys. 10: 859 (1980).CrossRefGoogle Scholar
  46. 44.
    G. Pfeiffer and H. Wipf, The trapping of hydrogen in niobium by nitrogen interstitials, J. Phys. F: Met. Phys. 6: 167 (1976).CrossRefGoogle Scholar
  47. 45.
    T. W. Wood and R. D. Daniels, The influence of hydrogen on the tensile properties of columbium, Trans. TMS-AIME, 233: 898 (1965).Google Scholar
  48. 46.
    W. T. Chandler and R. J. Walter, Hydrogen effects in refractory metals, in: “Proc. AIME Symposium on Refractory Metal Alloys”, I. Machiin, R.T. Begley and E. D. Weisert, eds., Plenum, New York (1968).Google Scholar
  49. 47.
    T. G. Oakwood and R. D. Daniels, The ductile-brittle-ductile transition in columbium-hydrogen alloys, Trans. TMS-AIME, 242: 1327 (1968).Google Scholar
  50. 48.
    D. G. Westlake, A generalized model for hydrogen embrittlement, Trans. ASM 62: 1000 (1969).Google Scholar
  51. 49.
    S. Gahr, M. L. Grossbeck and H. K. Birnbaum, Hydrogen embrittlement of Nb. I-Macroscopic behavior at low temperatures, Acta Met. 25: 125 (1977).CrossRefGoogle Scholar
  52. 50.
    M. L. Grossbeck and H. K. Birnbaum, Low temperature hydrogen embrittlement of Nb. II-Microscoic observations, Acta Met 25: 135 (1977).CrossRefGoogle Scholar
  53. 51.
    S. Tanaka and H. Kimura, Hydrogen embrittlement of vanadium-titanium alloys, Trans. Japan Inst. Met., 21: 513 (1980).Google Scholar
  54. 52.
    B. Baranowski, Metal-hydrogen systems in the high pressure range, Z. für Phys. Chem 114: 59 (1979).CrossRefGoogle Scholar
  55. 53.
    Ellina Lunarska-Borowiecka and Nicholas F. Fiore, Hydride formation in a Ni-base superalloy, to be published.Google Scholar
  56. 54.
    H. W. Pickering and R. P. Frankenthal, On the mechanism of localized corrosion of iron and stainless steel, II. Morphological studies, J. Electrochem Soc. 119: 1304 (1972).CrossRefGoogle Scholar
  57. 55.
    D. G. Westlake, Stoichiometries and interstitial site occupation in the hydrides of ZrNi and other isostructural intermetallic compounds, J. Less-Common Met. 75: 177 (1980).CrossRefGoogle Scholar
  58. 56.
    C. E. Lundin, F. E. Lynch and C. B. Magee, A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds, J. Less-Common Met. 56: 19 (1977).CrossRefGoogle Scholar
  59. 57.
    P. Thompson, F. Reidinger, J. J. Reilly, L. M. Corliss and J. M. Hastings, Neutron diffraction study of a-iron titanium deuteride, J. Phys. F: Metal Phys. 10: L57 (1980).CrossRefGoogle Scholar
  60. 58.
    I. Jacob, D. Shaltiel, D. Davidov, and I. Miloslayski, A phenomenological model for the hydrogen absorption capacity in pseudobinary Laves phase compounds, Solid State Comm. 23: 669 (1977).CrossRefGoogle Scholar
  61. 59.
    I. Jacob and D. Shaltiel, Hydrogen sorption properties of some AB Laves phase compounds, J. Less-Common. Met 65:117 2(1979).Google Scholar
  62. 60.
    J. Shinar, I. Jacob, D. Davidov, and D. Shaltiel, Hydrogen sorption properties in binary and pseudobinary intermetallic compounds, in: “Proc. Int. Symp. on Hydrides for Energy Storage, Geilo, Norway, 1977, A. F. Andresen and Arnulf Maeland, eds., Pergamon Press, New York (1977); I. Jacob, J. M. Block, D. Shaltiel and D. Davidov, On the occupation of interstitial sites by hydrogen atoms in intermetallic hydrides: A quantitative model, Solid State Comm. 35:155 (1980).Google Scholar
  63. 61.
    A. C. Switendick, Theoretical studies of hydrogen in metals: Current status and further prospects, Report No. SAND 78–0250 (1978).Google Scholar
  64. 62.
    J.-J. Didisheim, K. Yvon, D. Shaltiel, and P. Fischer, The distribution of the deuterium atoms in the deuterated hexagonal Laves-phase ZrMn2D3, Solid State Comm. 31: 47 (1979).CrossRefGoogle Scholar
  65. 63.
    J.-J. Didisheim, K. Yvon, D. Shaltiel, P. Fischer, P. Bujard and E. Walker, The distribution of the deuterium atoms in the deuterated cubic Laves-phase ZrV2D4.5, Solid State Comm. 32: 1087 (1979).CrossRefGoogle Scholar
  66. 64.
    David P. Shoemaker and Clara Brink Shoemaker, Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases, J. Less-Common Met. 68: 43 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • D. G. Westlake
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations