Skip to main content

An Introduction to Hydrogen in Alloys

  • Chapter
Metal Hydrides

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 76))

Abstract

Substitutional alloys, both those that form hydrides and those that do not, are discussed, but with more emphasis on the former than the latter. This overview includes the following closely related subjects: 1) the significant effects of substitutional solutes on the pressure-composition-temperature (PCT) equilibria of metal-hydrogen systems, 2) the changes in thermodynamic properties resulting from differences in atom size and from modifications of electronic structure, 3) attractive and repulsive interactions between H and solute atoms and the effects of such interactions on the pressure dependent solubility for H, 4) “H trapping” in alloys of Group V metals and its effect on the terminal solubility for H (TSH), 5) some other mechanisms invoked to explain the enhancement (due to alloying) of the (TSH) in Group V metals, and 6) “H-impurity complexes” in alloys of the metals Ni, Co, and Fe. Some results showing that an enhanced TSH may ameliorate the resistance of a metal to hydrogen embrittlement are presented. Recent studies of resistivity and of elastic constants are summarized as just two examples of the important effects that interstitial hydrogen can have on the properties of metals and their alloys. Finally, a potential hydrogen storage material, ZrNi, is considered. From empirical rules, predictions are made regarding both the particular sites that can be occupied by hydrogen in this intermetallic compound and the resultant stoichiometries.

Work supported by the U.S. Department of Energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. G. Westlake, Enthalpy data for the zirconium-hydrogen system, J. Nuc Mat. 7: 346 (1962).

    Article  CAS  Google Scholar 

  2. T. Eguchi and S. Morozumi, Influence of alloying elements on the solubility of hydrogen in vanadium, J. Jap. Inst. Met. 38: 1025 (1974).

    CAS  Google Scholar 

  3. T. Eguchi and S. Morozumi, Solubility of hydrogen in molybdenum and its alloys, J. Jap. Inst. Met. 38: 1019 (1974).

    CAS  Google Scholar 

  4. J. F. Lynch, J. J. Reilly and F. Millot, The absorption of hydrogen by binary vanadium-chromium alloys, J. Phys. Chem. Solids 39: 883 (1978).

    Article  CAS  Google Scholar 

  5. R. Burch and N. B. Mason, The relative importance of geometric and electronic contributions to the thermodynamic properties of body-centered cubic metal hydrides, J. Less-Common Met. 63: 57 (1979).

    Google Scholar 

  6. Akihiko Inoue, Masahiro Katsura and Tadao Sano, The solubility of hydrogen in Nb-Mo alloy, J. Less-Common Met. 55: 9 (1977).

    Article  CAS  Google Scholar 

  7. D. W. Jones, N. Pessall and A. D. McQuillan, Correlation between magnetic susceptibility and hydrogen solubility in alloys of early transition elements, Phil. Mag. 6: 455 (1961).

    Article  CAS  Google Scholar 

  8. H. Katsuta and Rex B. McLellan, Thermodynamics of molybdenumniobium-hydrogen ternary solid solutions, J. Phys. Chem. Solids 40: 845 (1979).

    Article  CAS  Google Scholar 

  9. D. G. Westlake and J. F. Miller, Terminal solubility of hydrogen in Nb-Ta alloys and characterization of the solid solutions, J. Less-Common Met. 65: 139 (1979)

    Article  CAS  Google Scholar 

  10. E. Veleckis and R. K. Edwards, Thermodynamic properties in the systems vanadium-hydrogen, niobium-hydrogen, and tantalum-hydrogen, J. Phys. Chem. 6: 83 (1969).

    Google Scholar 

  11. O. J. Kleppa, P. Dantzer and M. E. Melnichak, High-temperature thermodynamics of the solid solutions of hydrogen in bcc vanadium, niobium and tantalum, J. Chem. Phys. 61: 4048 (1974).

    Article  CAS  Google Scholar 

  12. S. W. Stafford and Rex B. McLellan, The thermodynamic properties of the Fe-Ni-H ternary system, Acta Met. 24: 553 (1976).

    Article  CAS  Google Scholar 

  13. D. G. Westlake, A resistometric study of phase equilibria at low temperatures in the vanadium-hydrogen system, Trans. TMS-AIME 239: 1341 (1967).

    CAS  Google Scholar 

  14. T. Schober and A. Carl, A differential thermal analysis study of the vanadium-hydrogen system, Phys. Stat. Sol. 43: 443 (1977).

    Article  CAS  Google Scholar 

  15. D. H. Sherman, C. V. Owen and T. E. Scott, The effect of hydrogen on the structure and properties of vanadium, Trans. TMS-AIME 242: 1775 (1968).

    Google Scholar 

  16. G. Cannelli and R. Cantelli, A study of the effects of deuteride precipitation in tantalum by freqency and internal friction measurements, Appl. Phys. 3: 325 (1974).

    Article  CAS  Google Scholar 

  17. T. Matsumoto, Y. Sasaki, and M. Hihara, Interaction between interstitial hydrogen and substitutional solute atoms in solid solutions of niobium-base ternary alloys, J. Phys. Chem. Solids 36: 215 (1975).

    Article  CAS  Google Scholar 

  18. Takehiko Matsumoto, NMR study of interaction between interstitial hydrogen and substitutional vanadium atoms in niobium metal, J. Phys. Soc. Japan 42: 1583 (1977).

    Article  Google Scholar 

  19. Y. Sasaki and M. Amano, Hydrogen solubility and embrittlement in Nb-V, Nb-Mo and Nb-Ta alloys, in: Proceedings of the 2nd International Congress on Hydrogen in Metals“, Paris, Vol. 1, Pergamon Press, New York (1978).

    Google Scholar 

  20. S. Tanaka and H. Kimura, Solubility and diffusivity of hydrogen in vanadium and its alloys around room temperature, Trans. Japan Inst. Met 20: 647 (1979).

    CAS  Google Scholar 

  21. J. F. Miller and D. G. Westlake, Enhanced terminal solubilities for hydrogen in niobium alloyed with vanadium, titanium and molybdenum, Trans. Japan Inst. Met., 21: 153 (1980).

    Google Scholar 

  22. J. M. Corsan and A. J. Cook, Specific heat and superconductivity of binary alloys containing V, Nb, and Ta, Phys. Stat. Sol. 40: 657 (1970).

    Article  CAS  Google Scholar 

  23. P. S. Rudman, X-ray diffuse-scattering study of the Nb-Ti bcc solution, Acta Met. 12: 1381 (1964).

    Article  CAS  Google Scholar 

  24. Ya. S. Umanskii and V. I. Fadeeva, Peculiarities of the atomic structure of a Ta-Nb solid solution, Sov. Phys.Cryst. 11: 193 (1966).

    Google Scholar 

  25. Farid A. Khavadzha, V. M. Silonov and A. A. Katsnel’son, Short-range order in the systems Nb-V, Ta-V, and Nb-Ta, Sov. Phys. J. 20: 5 (1977).

    Article  Google Scholar 

  26. E. Colavita, A. Franciosi, R. Rosei, F. Sacchetti, E. S. Giuliano, R. Ruggeri, and D. W. Lynch, Electronic structure of Nb-Mo alloys, Phys. Rev. B22: 4864 (1979).

    Google Scholar 

  27. E. S. Black, D. W. Lynch and C. G. Olson, Optical properties (0.1–25 eV) of Nb-Mo and other Nb-based alloys, Phys. Rev. B16: 2337 (1977).

    Article  CAS  Google Scholar 

  28. G. C. Abell, Quasimolecular Jahn-Teller resonance states in the bcc metallic hydrides of vanadium, niobium, and tantalum, Phys. Rev. B, 20: 4773 (1979).

    Article  CAS  Google Scholar 

  29. Bohdan Stalinski and Bogdan Nowak, On the structure of titanium-niobium-hydrogen alloys, Bull. de l’Acad. Pol. des Sci., Ser. des sci. chim. 25: 451 (1977).

    CAS  Google Scholar 

  30. C. G. Chen and H. K. Birnbaum, Low-temperature H-0 and H-N relaxations, Phys. Stat. Sol 36: 687 (1976).

    Article  CAS  Google Scholar 

  31. K. Ozawa, S. Yamaguchi, Y. Fujino, O. Yoshinari, M. Koiwa and M. Hirabayashi, Channeling studies on the trapping of deuterium in vanadium by oxygen interstitials, Nucl. Instr. and Meth. 149: 405 (1978).

    Article  CAS  Google Scholar 

  32. M. A. Pick and D. O. Welch, Hydrogen absorption in the niobium-vanadium system, Z. für Phys. Chem. 114: 37 (1979).

    Article  CAS  Google Scholar 

  33. D. Richter, Hydrogen diffusion and trapping in bcc and fcc metals, Report No. BNL-26132 (1979).

    Google Scholar 

  34. G. Cannelli and R. Cantelli, Hydrogen diffusion in niobium-titanium alloys, in: “Proceedings of the 2nd International Congress on Hydrogen in Metals”, Paris, Vol. 1, Pergamon Press, New York 1978 ).

    Google Scholar 

  35. K. E. Blazek, The effect of a substitutional solute element on the diffusivity of an interstitial solute element in a dilute ternary alloy, Trans. Japan Inst. Met. 19: 253 (1978).

    CAS  Google Scholar 

  36. G. Cannelli and R. Cantelli, Anelasticity in niobium-titanium alloys, in: “Internal Friction and Ultrasonic Attenuation in Solids”, R. R. Hasiguti and Nobuo Mikoshiba, eds., University of Tokyo Press, Tokyo (1977).

    Google Scholar 

  37. H. Krjnmuller, B. Hohler, H. Schreyer and K. Vetter, Investigation of hydrogen-impurity complexes in transition metals, Phil. Mag. B37: 569 (1978).

    Article  Google Scholar 

  38. B. Hohler and H. Krönmuller, Investigation of hydrogen-impurity complexes in transition metals, Z.für Phys. Chem. 114: 93 (1979).

    Article  CAS  Google Scholar 

  39. E. S. Fisher, J. F. Miller, D. G. Westlake, and H. L. Alberts, to be published.

    Google Scholar 

  40. D. A. Armstrong and B. L. Mordike, The influence of alloying and temperature on the elastic constants of tantalum, J. Less-Common Met. 22: 265 (1970).

    Article  CAS  Google Scholar 

  41. E. S. Fisher, D. G. Westlake and S. T. Ockers, Effects of hydrogen and oxygen on the elastic moduli of vanadium, niobium, and tantalum single crystals, Phys. Stat. Sol. 28:591 (1975), and E. S. Fisher, Effects of hydrogen and UHV annealing on the elastic moduli of tantalum, Scripta Met. 11: 685 (1977).

    Article  CAS  Google Scholar 

  42. A. Magerl, B. Berre and G. Alefeld, Changes of the elastic constants of V, Nb, and Ta by hydrogen and deuterium, Phys. Stat. Sol. 36: 161 (1976).

    Article  CAS  Google Scholar 

  43. H. L. Alberts, E. S. Fisher, K. W. Katahara and

    Google Scholar 

  44. M. H. Manghnani, The effect of hydrostatic pressure on the elastic constants of pure and hydrogenated single crystals of V and Nb53Ta47, J. Phys. F: Met. Phys. 9: L209 (1979).

    Article  Google Scholar 

  45. D. G. Westlake and J. F. Miller, Resistivity due to hydrogen in transition metal alloys, J. Phys. F: Met. Phys. 10: 859 (1980).

    Article  CAS  Google Scholar 

  46. G. Pfeiffer and H. Wipf, The trapping of hydrogen in niobium by nitrogen interstitials, J. Phys. F: Met. Phys. 6: 167 (1976).

    Article  CAS  Google Scholar 

  47. T. W. Wood and R. D. Daniels, The influence of hydrogen on the tensile properties of columbium, Trans. TMS-AIME, 233: 898 (1965).

    CAS  Google Scholar 

  48. W. T. Chandler and R. J. Walter, Hydrogen effects in refractory metals, in: “Proc. AIME Symposium on Refractory Metal Alloys”, I. Machiin, R.T. Begley and E. D. Weisert, eds., Plenum, New York (1968).

    Google Scholar 

  49. T. G. Oakwood and R. D. Daniels, The ductile-brittle-ductile transition in columbium-hydrogen alloys, Trans. TMS-AIME, 242: 1327 (1968).

    CAS  Google Scholar 

  50. D. G. Westlake, A generalized model for hydrogen embrittlement, Trans. ASM 62: 1000 (1969).

    CAS  Google Scholar 

  51. S. Gahr, M. L. Grossbeck and H. K. Birnbaum, Hydrogen embrittlement of Nb. I-Macroscopic behavior at low temperatures, Acta Met. 25: 125 (1977).

    Article  CAS  Google Scholar 

  52. M. L. Grossbeck and H. K. Birnbaum, Low temperature hydrogen embrittlement of Nb. II-Microscoic observations, Acta Met 25: 135 (1977).

    Article  CAS  Google Scholar 

  53. S. Tanaka and H. Kimura, Hydrogen embrittlement of vanadium-titanium alloys, Trans. Japan Inst. Met., 21: 513 (1980).

    Google Scholar 

  54. B. Baranowski, Metal-hydrogen systems in the high pressure range, Z. für Phys. Chem 114: 59 (1979).

    Article  CAS  Google Scholar 

  55. Ellina Lunarska-Borowiecka and Nicholas F. Fiore, Hydride formation in a Ni-base superalloy, to be published.

    Google Scholar 

  56. H. W. Pickering and R. P. Frankenthal, On the mechanism of localized corrosion of iron and stainless steel, II. Morphological studies, J. Electrochem Soc. 119: 1304 (1972).

    Article  Google Scholar 

  57. D. G. Westlake, Stoichiometries and interstitial site occupation in the hydrides of ZrNi and other isostructural intermetallic compounds, J. Less-Common Met. 75: 177 (1980).

    Article  CAS  Google Scholar 

  58. C. E. Lundin, F. E. Lynch and C. B. Magee, A correlation between the interstitial hole sizes in intermetallic compounds and the thermodynamic properties of the hydrides formed from those compounds, J. Less-Common Met. 56: 19 (1977).

    Article  CAS  Google Scholar 

  59. P. Thompson, F. Reidinger, J. J. Reilly, L. M. Corliss and J. M. Hastings, Neutron diffraction study of a-iron titanium deuteride, J. Phys. F: Metal Phys. 10: L57 (1980).

    Article  CAS  Google Scholar 

  60. I. Jacob, D. Shaltiel, D. Davidov, and I. Miloslayski, A phenomenological model for the hydrogen absorption capacity in pseudobinary Laves phase compounds, Solid State Comm. 23: 669 (1977).

    Article  CAS  Google Scholar 

  61. I. Jacob and D. Shaltiel, Hydrogen sorption properties of some AB Laves phase compounds, J. Less-Common. Met 65:117 2(1979).

    Google Scholar 

  62. J. Shinar, I. Jacob, D. Davidov, and D. Shaltiel, Hydrogen sorption properties in binary and pseudobinary intermetallic compounds, in: “Proc. Int. Symp. on Hydrides for Energy Storage, Geilo, Norway, 1977, A. F. Andresen and Arnulf Maeland, eds., Pergamon Press, New York (1977); I. Jacob, J. M. Block, D. Shaltiel and D. Davidov, On the occupation of interstitial sites by hydrogen atoms in intermetallic hydrides: A quantitative model, Solid State Comm. 35:155 (1980).

    Google Scholar 

  63. A. C. Switendick, Theoretical studies of hydrogen in metals: Current status and further prospects, Report No. SAND 78–0250 (1978).

    Google Scholar 

  64. J.-J. Didisheim, K. Yvon, D. Shaltiel, and P. Fischer, The distribution of the deuterium atoms in the deuterated hexagonal Laves-phase ZrMn2D3, Solid State Comm. 31: 47 (1979).

    Article  CAS  Google Scholar 

  65. J.-J. Didisheim, K. Yvon, D. Shaltiel, P. Fischer, P. Bujard and E. Walker, The distribution of the deuterium atoms in the deuterated cubic Laves-phase ZrV2D4.5, Solid State Comm. 32: 1087 (1979).

    Article  CAS  Google Scholar 

  66. David P. Shoemaker and Clara Brink Shoemaker, Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases, J. Less-Common Met. 68: 43 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Westlake, D.G. (1981). An Introduction to Hydrogen in Alloys. In: Bambakidis, G. (eds) Metal Hydrides. NATO Advanced Study Institutes Series, vol 76. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5814-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5814-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5816-0

  • Online ISBN: 978-1-4757-5814-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics