Metal Hydrides pp 105-108 | Cite as

Diffusion of Hydrogen in Metals

  • Johann Völkl
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)


Many experimental methods have been applied to determine diffusion coefficients of H in metals1. The following methods are briefly reviewed: Permeation methods, mechanical relaxation methods (Snoek effect, Gorsky effect), electrochemical methods, magnetic disaccommodation2, resistivity relaxation, tracer method, x-ray method,gravimetric method, nuclear magnetic resonance (NMR)2, quasielastic neutron scatterin (QNS)2, Mbssbauer effect3, nuclear acoustic resonance4 and a nuclear physical method5.


Metal Hydride Thermodynamic Factor Acoustic Resonance4 Chemical Diffusion Coefficient Hydrogen Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Völkl, G. Alefeld, in:“Diffusion in Solids, Recent Developments” (A.S. Nowick, J.J. Burton, eds.), Academic Press, New York 1975, p. 231.Google Scholar
  2. 2.
    For review articles by H. Wagner (elastic interaction, p. 5), T. Springer (inelastic neutron scattering, p. 75), R.M. Cotts (NMR, p. 227), K. Skäld (QNS, p. 267), and H. Kronmüller (magnetic disaccommodation, p. 289) see “Hydrogen in Metals I, Topics in Applied Physics”, Vol. 28 ( G. Alefeld and J. Völkl, eds.), Springer-Verlag, Berlin - Heidelberg - New York 1978.Google Scholar
  3. 3.
    A. Heidemann, G. Kaindl, D. Salomon, H. Wipf, G. Wortmann, Phys. Rev. Lett. 36: 213 (1976)CrossRefGoogle Scholar
  4. A. Heidemann, H.Wipf, G. Wortmann, Hyperfine Interactions 4: 844 (1978)CrossRefGoogle Scholar
  5. H. Wipf, A. Heidemann, J. Phys. C: Solid State Phys., in press (1980)Google Scholar
  6. A. Heidemann, H. Wipf, G. Wortmann, to be published (1980).Google Scholar
  7. 4.
    B. Ströbel, Thesis, Universität Konstanz (1979)Google Scholar
  8. B. Ströbel, K. Läuger, E.H. Bömmel, Appl. Phys. 9: 39 (1976).CrossRefGoogle Scholar
  9. 5.
    R. Dörr, E. Brauer, R. Gruner, F. Rauch, Z. Physik. Chem. N.F. 116: 271 (1979).CrossRefGoogle Scholar
  10. 6.
    J. Völkl, G. Alefeld, in:“ Hydrogen in Metals I, Topics in Applied Physics”, Vol.28 (G. Alefeld and J. Völkl, eds.), Springer-Verlag, Berlin - Heidelberg-New York 1978, p. 321.CrossRefGoogle Scholar
  11. 7.
    G. Matusiewicz, H.K. Birnbaum, J. Phys. F: Metal Phys. 7: 2285 (1977)CrossRefGoogle Scholar
  12. H.K. Birnbaum, G. Matusiewicz, C.G. Chen, P. Zapp, Proc. 2nd Int. Congr. on Hydrogen in Metals, Paris 1977.Google Scholar
  13. 8.
    J. Völkl, G. Alefeld, Z. Physik. Chem. N.F. 114:123 (1979).CrossRefGoogle Scholar
  14. 9.
    H.C. Bauer, J. Völkl, J. Tretkowski, G. Alefeld, Z. Phys. B29: 17 (1978).Google Scholar
  15. 10.
    J. Tretkowski, J. Völkl, G. Alefeld, Z. Phys. B28: 259 (1977).Google Scholar
  16. 11.
    D. Emin, M.I. Baskes, W.D. Wilson, Hyperfine Interactions 6: 255 (1979)CrossRefGoogle Scholar
  17. D. Emin, M.I. Baskes, W.D. Wilson, Phys. Rev. Lett. 42: 791 (1979)CrossRefGoogle Scholar
  18. D. Emin, M.I. Baskes, W.D. Wilson, Z. Physik. Chem. N.F. 114: 231 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Johann Völkl
    • 1
  1. 1.Physik-DepartmentTechnischen Universität MünchenGarchingW.-Germany

Personalised recommendations