Magnetism of Lanthanide and Actinide Intermetallic Hydrides

  • W. E. Wallace
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)

Abstract

The search for new hydrogen storage materials (needed for the development of hydrogen as a fuel) is impeded by a paucity of information about metal-metal and metal-hydrogen bonding. Information bearing upon these types of bonds is provided by appropriate magnetic studies.

When the elemental lanthanides are hydrogenated to saturation, metallic electrical conduction is lost and magnetic ordering is eliminated or greatly suppressed. Since electrical conduction and the exchange interaction which leads to magnetic ordering both require the presence of conduction electrons, it appears that hydrogenation results in a complete depopulation of the host metal conduction band. Thus hydrogen in these materials is essentially anionic and hence the bonding in the lanthanide hydrides is essentially ionic.

Intermetallic compounds involving Fe, Co or Ni combined with Th or the lanthanides hydrogenate to form very hydrogen-rich systems. They have proton densities exceeding that of liquid hydrogen by up to a factor of 4. Hydrogenation to this extent profoundly modifies the electronic nature of the host metal in many cases. Among the effects observed: (1) Strengthening of exchange to convert a paramagnetic system into a ferromagnet (Th6Mn23); (2) Suppression of ferromagnetism (Y6Mn23); (3) Transforming a superconductor into a ferromagnet (Th7Fe3); (4) Generation of a spin-glass system (Er6Mn23). Interpretation of these experimental results requires adoption of the concept that hydrogen is acting as an electron acceptor. Hydrogen is probably largely anionic in these systems and the ionic contribution appears to be important part, perhaps the dominant part, of the bonding.

Keywords

Hydrogen Storage Metal Hydride Elemental Lanthanide Hydrogen Storage Material Crystal Field Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richard L. Beck, Summary Report to the U.S. Atomic Energy Commission from the Metallurgy Department, University of Denver, Oct. 15, 1962.Google Scholar
  2. 2.
    F. Pourarian and W. E. Wallace, unpublished measurements.Google Scholar
  3. 3.
    J. J. Reilley and R. H. Wiswall, Jr., Inorg. Chem. 13, 218 (1974).CrossRefGoogle Scholar
  4. 4.
    J. H. N. Van Vucht, F. A. Kuijpers and H. C. A. M. Bruning, Philips Res. Repts. 25, 133 (1970).Google Scholar
  5. 5.
    J. J. Reilley and R. H. Wiswall, Jr., Inorg. Chem. 7, 2254, (1968).CrossRefGoogle Scholar
  6. 6.
    D. M. Gualtieri, K. S. V. L. Narasimhan and W. E. Wallace, AIP Conf. Proc. 34, 219 (1976).CrossRefGoogle Scholar
  7. 7.
    S. K. Malik, T. Takeshita and W. E. Wallace, Mag. Lett. 1, 33 (1976).Google Scholar
  8. 8.
    K. H. J. Buschow, H. H. Van Mal and A. R. Miedema, J. Less-Common Met. 42, 163 (1975).CrossRefGoogle Scholar
  9. 9.
    C. A. Bechman, A. Goudy, T. Takeshita, W. E. Wallace and R. S. Craig, Inorg. Chem. 15, 2184 (1976).CrossRefGoogle Scholar
  10. 10.
    F. A. Kuijpers, Ph.D. Thesis, Technische Hogeschool, Delft (1973).Google Scholar
  11. 11.
    See ref. 8.Google Scholar
  12. 12.
    H. V. Van Mal, K. H. J. Buschow and A. R. Miedema, J. Less-Common Met. 49, 473 (1976).CrossRefGoogle Scholar
  13. 13.
    H. Oesterreicher and H. Bittner, phys. stat. sol.(a) 41, K101 (1977).Google Scholar
  14. 14.
    S. K. Malik, T. Takeshita and W. E. Wallace, Solid State Commun. 23, 599 (1977).CrossRefGoogle Scholar
  15. 15.
    B. Stalinski, Bull. Acad. Sci.(Poland) 5, 100 (1957) and 7, 269 (1959).Google Scholar
  16. 16.
    R. Heckman, J. Chem. Phys. 40, 2958 (1964) and 46, 2158 (1967).CrossRefGoogle Scholar
  17. 17.
    G. G. Libowitz and J. G. Pack, J. Chem. Phys. 50, 3557 (1969).CrossRefGoogle Scholar
  18. 18.
    W. E. Wallace et al., J. Appl. Phys. Suppl. 33, 1348 (1962); J. Appl. Phys. 34, 1348 (1963); J. Chem. Phys. 39, 1285 (1963); Advances in Chemistry Series 39, 122 (1963).Google Scholar
  19. 19.
    A. C. Switendick, Solid State Commun. 8, 1463 (1970) and Int. J. of Quantum Chem. 5, 459 (1971).CrossRefGoogle Scholar
  20. 20.
    D. S. Schreiber and R. M. Cotts, Phys. Rev. 131, 1118 (1969).CrossRefGoogle Scholar
  21. 21.
    W. E. Wallace and K. H. Mader, J. Chem. Phys. 48, 84 (1968).CrossRefGoogle Scholar
  22. 22.
    For a comprehensive discussion of the crystal field interaction and associated phenomena see W. E. Wallace, S. G. Sankar and V. U. S. Rao, in Structure and Bonding, 33, 1 Springer-Verlag (1977).Google Scholar
  23. 23.
    K. Knorr and B. E. F. Fender in Crystal Field Effects in Metals and Alloys, A. Furrer, ed. Plenum Press, New York (1977), p. 42.Google Scholar
  24. 24.
    W. E. Wallace, Rare Earth Intermetallics.’ Academic Press Inc., New York (1973).Google Scholar
  25. 25.
    W. E. Wallace, R. S. Craig and V. U. S. Rao, Advances in Chemistry, to appear.Google Scholar
  26. 26.
    D. M. Gualtieri, K. S. V. L. Narasimhan and T. Takeshita, J. Appl. Phys. 47, 3432 (1976).CrossRefGoogle Scholar
  27. 27.
    W. E. Wallace, R. F. Karlicek, Jr. and H. Imamura, J. Phys. Chem. 83, 1708 (1979).CrossRefGoogle Scholar
  28. 28.
    S. K. Malik, W. E. Wallace and T. Takeshita, Solid State Commun. 28, 359 (1978).CrossRefGoogle Scholar
  29. 29.
    E. B. Boltich, S. K. Malik and W. E. Wallace, J. Less-Common Metals, in press.Google Scholar
  30. 30.
    B. T. Matthias, V. B. Compton and E. Corenzwit, J. Phys. Chem. Solids 17, 130 (1961).CrossRefGoogle Scholar
  31. 31.
    See ref. 7.Google Scholar
  32. 32.
    K. H. J. Buschow, Solid State Commun. 19, 421 (1976).Google Scholar
  33. 33.
    J. J. Rhyne, S. G. Sankar and W. E. Wallace, in The Rare Earths in Science and Technology, eds. G. J. McCarthy and J. J. Rhyne. Plenum Press, N.Y. (1978), p. 63.CrossRefGoogle Scholar
  34. 34.
    J. J. Rhyne, G. E. Fish, S. G. Sankar and W. E. Wallace, J. de Physique, coil C5, Suppl. No. 5, 40, C5–209 (1979).Google Scholar
  35. 35.
    G. E. Fish, J. J. Rhyne, S. G. Sankar and W. E. Wallace, J. Appl. Phys. 30 (3), 2003 (1979).CrossRefGoogle Scholar
  36. 36.
    See ref. 8.Google Scholar
  37. 37.
    K. H. J. Buschow, in Hydrides for Energy Storage, A. F. Andresen and A. J. Maeland, eds. Pergamon Press, Inc. (1978), p. 273.Google Scholar
  38. 38.
    R. Lemaire, Cobalt 32, 132 (1966).Google Scholar
  39. 39.
    See ref. 24, p. 147Google Scholar
  40. 40.
    B. Bleaney in Rare Earth Research, Proceedings of the 3rd Rare Earth Research Conference, K. S. Voores, ed., Vol. 2, p. 499. Gordon and Breach, New York (1964).Google Scholar
  41. 41.
    B. Leon and W. E. Wallace, J. Less-Common Met. 22, 1 (1970).CrossRefGoogle Scholar
  42. 42.
    S. K. Malik and W. E. Wallace, Solid State Commun. 24, 283 (1977).CrossRefGoogle Scholar
  43. 43.
    See ref. 9.Google Scholar
  44. 44.
    S. K. Malik, W. E. Wallace and T. Takeshita, Solid State Commun. 28, 977 (1978).CrossRefGoogle Scholar
  45. 45.
    E. R. Bauminger, D. Davidov, I. Felner, I. Nowik, S. Ofer and D. Shaltiel, Physica 86–88B, 201 (1977).Google Scholar
  46. 46.
    K. H. J. Buschow and R. C. Sherwood, J. Appl. Phys. 49, 1480 (1978).CrossRefGoogle Scholar
  47. 47.
    H. Oesterreicher and H. Bittner, J. Mag. Magn. Mat. 15–18, 1264 (1980).Google Scholar
  48. 48.
    S. A. Marei, R. S. Craig, W. E. Wallace and T. Tsuchida, J. Less-Common Met. 13, 391 (1967).CrossRefGoogle Scholar
  49. 49.
    See ref. 24, pp. 187–194.Google Scholar
  50. 50.
    H. R. Kirchmayr and W. Steiner, J. Phys. Suppl. 32, C1–665 (1977).Google Scholar
  51. 51.
    C. A. Bachman, K. S. V. L. Narasimhan, W. E. Wallace, R. S. Craig and R. A. Butera, J. Phys. Chem. Solids 37, 245 (1976).CrossRefGoogle Scholar
  52. 52.
    See ref. 14.Google Scholar
  53. 53.
    See ref. 13.Google Scholar
  54. 54.
    F. Pourarian, E. B. Boltich, W. E. Wallace and S. K. Malik, J. Less-Common Metals, in press.Google Scholar
  55. 55.
    F. Pourarian, E. B. Boltich, W. E. Wallace, R. S. Craig and S. K. Malik, J. Mag. Magn. Mat., in press.Google Scholar
  56. 56.
    A. Delapalma, J. Ddportes, R. Lemaire, K. Hardman and W. J. James, J. Appl. Phys. 50, 1987 (1979).Google Scholar
  57. 57.
    K. Hardman, Ph.D. Thesis, University of Missouri, Rolla, 1979.Google Scholar
  58. 58.
    G. Hilscher and H. Rais, J. Phys. F. Metal Phys. 8, 511 (1978).CrossRefGoogle Scholar
  59. 59.
    S. K. Malik, F. J. Arlinghaus and W. E. Wallace, Phys. Rev. B 16, 1242 (1977).CrossRefGoogle Scholar
  60. 60.
    S. K. Malik, F. J. Arlinghaus and W. E. Wallace, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • W. E. Wallace
    • 1
  1. 1.Department of ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations