Metal Hydrides pp 345-360 | Cite as

Thermodynamics and Kinetics of Hydrogen Absorption in Amorphous NiZr-Alloys

  • F. H. M. Spit
  • J. W. Drijver
  • W. C. Turkenburg
  • S. Radelaar
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 76)


The hydrogen absorption in amorphous NiZr-alloys will be discussed and compared with the absorption of crystalline alloys of similar composition. The hydrogen to metal ratio appears to be slightly smaller for amorphous alloys, and no pressure plateau is observed.

The results of kinetic studies using both the conventional volumetric technique and a novel combined calorimetric-gasdetection technique will be presented.

Preliminary results of surface studies by means of R.B.S. (Rutherford Back Scattering) show changes in surface composition after repeated hydrogen absorption and desorption cycling.


Hydrogen Absorption Amorphous Alloy Metal Hydride Pressure Plateau Hydrogen Sorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.H.M. Spit, J.W. Drijver and S. Radelaar, Zeitschrift für Physikalische Chemie Neue Folge Bd 116 (1979) 225CrossRefGoogle Scholar
  2. 2.
    A.J. Maeland,“Proc. Int. Symp. on Hydrides for Energy Storage”. Int. J. of Hydr. Energy, Pergamon Press, 1978Google Scholar
  3. 3.
    F.H.M. Spit et al. To be published.Google Scholar
  4. 4.
    K. Tang and R. Castanet, J. of Less Common Metals 51 (1977) 125CrossRefGoogle Scholar
  5. 5.
    R.P. Elliott, Constitution of binary alloys, 1st Suppl., McGraw Hill (1965)Google Scholar
  6. 6.
    M.E. Kirkpatrick and W.L. Larsen, Transactions of the ASM, vol. 54 (1961) 580Google Scholar
  7. 7.
    L. Meny, M. Champigny. CEA-R-3517, Serv. Centr. de Doc du CEA (1968)Google Scholar
  8. 8.
    Kubaschewsky (ed.). Atomic Energy Rev. Special issue no. 6Google Scholar
  9. 9.
    W.E. Sweeney, Jr. and A.P. Batt, J. Nucl. Mat. 13, no. 1 (1964) 87CrossRefGoogle Scholar
  10. 10.
    V.V. Pet’kov, V.Ya. Markiv and V.V. Gorskiy, Russ. Metallurgy (1972) 137Google Scholar
  11. 11.
    I.R. Tannenbaum, W.L. Korst, J.S. Mohl and G.G. Libowitz, 144th meeting of the Amer. Chem. Soc., Los Angeles, Calif., April 1963 (NAA-SR-7132)Google Scholar
  12. 12.
    A.R. Miedema, R.Boom, F.R. de Boer, J. Less Common Metals 41 (1975) 283CrossRefGoogle Scholar
  13. 13.
    A.R. Miedema, J. Less Common Metals 46 (1976) 67CrossRefGoogle Scholar
  14. 14.
    A.R. Miedema, K.H.J. Buschow, H.H. van Mal, J. Less Common Metals 49 (1976) 463CrossRefGoogle Scholar
  15. 15.
    A.R. Miedema, private communicationGoogle Scholar
  16. 16.
    D.R. Frederickson, R.L. Nuttal, H.E. Flotow and W.N. Hubbard, J. Phys. Chem. 67 (1963) 1506Google Scholar
  17. 17.
    B. Baranowski, Hydrogen in Metals II. Ed.: G. Alefeld and J. Völkl, Springer Verlag, Berlin (1978)Google Scholar
  18. 18.
    L. Schlapbach, A. Seiler, F. Stucki and H.C. Siegmann, J. Less Common Metals 73 (1980) 145CrossRefGoogle Scholar
  19. 19.
    G.D. Sandrock and P.D. Goodwell, J. Less Common Metals 71 (1980) 161CrossRefGoogle Scholar
  20. 20.
    G.S. Krinchik, L.V. Nikitin, V.V. Lunvin and P.A. Chernayskii, Sov. Phys. Solid State 21 (1979) 354Google Scholar
  21. 21.
    W.E. Wallace, R.F. Karlicek and H. Imamara, J. Phys. Chem. 83 (1979) 1708Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • F. H. M. Spit
    • 1
  • J. W. Drijver
    • 1
  • W. C. Turkenburg
    • 1
  • S. Radelaar
    • 1
    • 2
  1. 1.Technical Physics Dept.State University UtrechtUtrechtThe Netherlands
  2. 2.Laboratory of MetallurgyTechnical UniversityDelftThe Netherlands

Personalised recommendations