Skip to main content

GPI-anchored Protein Cleavage in the Regulation of Transmembrane Signals

  • Chapter
Membrane Dynamics and Domains

Part of the book series: Subcellular Biochemistry ((SCBI,volume 37))

Abstract

The structure of covalently-linked glycosylphosphatidylinositol (GPI) anchors of membrane proteins displayed on the cell surface is described. Evidence of how the GPI-anchors are sorted into membrane rafts in the plasma membrane is reviewed. Proteins are released by hydrolysis of the linkage to the GPI anchor and phospholipases from different sources involved in this process are characterised. The regulation of protein conformation and function resulting from phospholipase cleavage of the GPI anchor is discussed in the context of its role in signal transduction by insulin. In this signalling system, re-distribution of critical membrane components, including GPI-anchored proteins and non-receptor tyrosine kinases, between different raft domains appears to play a central role in the signal transduction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, S.N., Brown, D.A., and London, E., 1997, On the origin of sphingolipid/cholesterolrich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes, Biochemistry 36: 10944–10953.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, P.F., Vaz, W.L., and Thompson, T.E., 1992, Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer, Biochemistry 31: 7198–7210.

    Article  PubMed  CAS  Google Scholar 

  • Almqvist, P. and Carlsson, S.R., 1988, Characterization of a hydrophilic form of Thy-1 purified from human cerebrospinal fluid, J. Biol. Chem. 263: 12709–12715.

    PubMed  CAS  Google Scholar 

  • Barboni, E., Rivero, B.P., George, A.J., Martin, S.R., Renoup, D.V., Hounsell, E.E, Barber, P.C., and Morris, R.J., 1995, The glycophosphatidylinositol anchor affects the conformation of Thy-1 protein, J. Cell Sci. 108: 487–497.

    PubMed  CAS  Google Scholar 

  • Benting, J., Rietveld, A., Ansorge, I., and Simons, K., 1999, Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro, FEBS Lett. 462: 47–50.

    Article  PubMed  CAS  Google Scholar 

  • Bickel, P.E., 2002, Lipid rafts and insulin signaling, Am. J. Physiol. Endocrinol. Metab. 282: E1 – E10.

    PubMed  CAS  Google Scholar 

  • Brasitus, T.A. and Schachter, D., 1980, Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes, Biochemistry 19: 2763–2769.

    Article  PubMed  CAS  Google Scholar 

  • Braun-Breton, C., Rosenberry, T.L., and da Silva, L.P., 1988, Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositolspecific phospholipase C, Nature 332: 457–459.

    Article  PubMed  CAS  Google Scholar 

  • Brewis, I.A., Turner, A.J., and Hooper, N.M., 1994, Activation of the glycosylphosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C, Biochem. J. 303: 633–638.

    PubMed  CAS  Google Scholar 

  • Brodbeck, U., 1998, Signalling properties of glycosylphosphatidylinositols and their regulated release from membranes in the turnover of glycosylphosphatidylinositol-anchored proteins, Biol. Chem. Hoppe Seyler 379:1041–1044.

    Google Scholar 

  • Broomfield, S.J., and Hooper, N.M., 1993, Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase, Biochim. Biophys. Acta 1145: 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Cary, L.A., and Cooper, J.A., 2000, Signal transduction — Molecular switches in lipid rafts, Nature 404:945–947.

    Google Scholar 

  • Cebecauer, M., Cerny, J., and Horejsi, V., 1998, Incorporation of leucocyte GPI-anchored proteins and protein tyrosine kinases into lipid-rich membrane domains of COS-7 cells, Biochem. Biophys. Res. Commun. 243: 706–710.

    Article  PubMed  CAS  Google Scholar 

  • Chan, B.L., Lisanti, M.P., Rodriguez-Boulan, E., and Saltiel, A.R., 1988, Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor, Science 241:1670–1672.

    Google Scholar 

  • Cherukuri, A., Dykstra, M., and Pierce, S.K., 2001, Floating the raft hypothesis: Lipid rafts play a role in immune cell activation, Immunity 14: 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Daugherty, S., and Low, M.G., 1993, Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor, Infect. Immun. 61: 5078–5089.

    PubMed  CAS  Google Scholar 

  • Davitz, M.A., Hereld, D., Shak, S., Krakow, J., Englund, P.T., and Nussenzweig, V., 1987, A glycan-phosphatidylinositol-specific phospholipase D in human serum, Science 238: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Deeg, M.A., and Davitz, M.A., 1995, Glycosylphosphatidylinositol-phospholipase D: a tool for glycosylphosphatidylinositol structural analysis, Methods Enzymol. 250: 630–640.

    Article  PubMed  CAS  Google Scholar 

  • Deeg, M.A., and Verchere, C.B., 1997, Regulation of glycosylphosphatidylinositol-specific phospholipase D secretion from beta TC3 cells, Endocrinology 138:819–826.

    Google Scholar 

  • Durbin, H., Young, S., Stewart, L.M., Wrba, E, Rowan, A.J., Snary, D., and Bodmer, W.F., 1994, An epitope on carcinoembryonic antigen defined by the clinically relevant antibody PR1A3, Proc. Natl. Acad. Sci. USA 91: 4313–4317.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber, B., Bork, E, and Eisenhaber, E, 2001, Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes, Protein Eng. 14: 17–25.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhaber, B., Bork, P., Yuan, Y.P., Löffler, G., and Eisenhaber, E, 2000, Automated annotation of GPI anchor sites: case study C. elegans, Trends Biochem. Sci. 25: 340–341.

    Article  PubMed  CAS  Google Scholar 

  • Eliakim, R., Becich, M.J., Green, K., and Alpers, D.H., 1990, Both tissue and serum phospholipases release rat intestinal alkaline phosphatase, Am. J. Physiol. 259: G618 – G625.

    PubMed  CAS  Google Scholar 

  • Fantini, J., Maresca, M., Hannnache, D., Yahi, N., and Delézay, 0., 2000, Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: Activation of signal transduction pathways and perturbations of intestinal absorption and secretion, Glycoconjugate J. 17:173–179.

    Article  CAS  Google Scholar 

  • Ferguson, M.A., Low, M.G., and Cross, G.A., 1985, Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein, J. Biol. Chem. 260: 14547–14555.

    PubMed  CAS  Google Scholar 

  • Freedman, S.D., Kern, H.F., and Scheele, G.A., 1998, Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells, Eur. J. Cell Biol. 75: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Frick, W, Bauer, A., Bauer, J., Wied, S., and Müller, G., 1998, Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action, Biochemistry 37: 13421–13436.

    Article  PubMed  CAS  Google Scholar 

  • Friedrichson, T., and Kurzchalia, T.V., 1998, Microdomains of GPI-anchored proteins in living cells revealed by crosslinking, Nature 394: 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Giocondi, M.C., Vié, V, Lesniewska, E., Goudonnet, J.P., and Le Grimellec, C., 2000, In situ imaging of detergent-resistant membranes by atomic force microscopy, J. Struct. Biol. 131: 38–43.

    CAS  Google Scholar 

  • Gmachl, M., Sagan, S., Ketter, S., and Kreil, G., 1993, The human sperm protein PH-20 has hyaluronidase activity, FEBS Lett. 336: 545–548.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O.H., Volwerk, J.J., and Kuppe, A., 1991, Phosphatidylinositol-specific phospholipases C from Bacillus cereus and Bacillus thuringiensis, Methods Enzymol. 197: 493–502.

    Google Scholar 

  • Gustaysson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K.H., Magnusson, K., and Strâlfors, P., 1999, Localization of the insulin receptor in caveolae of adipocyte plasma membrane, FASEB J. 13: 1961–1971.

    Google Scholar 

  • Hanada, K., Nishijima, M., Akamatsu, Y., and Pagano, R.E., 1995, Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a g1ycosylphosphatidylinositol-anchored protein, in mammalian membranes, J. Biol. Chem. 270: 6254–6260.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, G.H., Immerdal, L., Thorsen, E., Niels-Christiansen, L.L., Nystrom, B.T., Demant, E.J.F., and Danielsen, E.M., 2001, Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes, J. Biol. Chem. 276: 32338–32344.

    Article  PubMed  CAS  Google Scholar 

  • Hari, T., Butikofer, P., Wiesmann, U.N., and Brodbeck, U., 1997, Uptake and intracellular stability of glycosylphosphatidylinositol-specific phospholipase D in neuroblastoma cells, Biochim. Biophys. Acta 1355: 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Hari, T., Kunze, H., Bohn, E., Brodbeck, U., and Butikofer, P., 1996, Subcellular distribution of glycosylphosphatidylinositol-specific phospholipase D in rat liver, Biochem. J. 320: 315–319.

    PubMed  CAS  Google Scholar 

  • Heinz, D.W., Ryan, M., Bullock, T.L., and Griffith, O.H., 1995, Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myoinositol, EMBO J. 14: 3855–3863.

    PubMed  CAS  Google Scholar 

  • Heinz, D.W., Ryan, M., Smith, M.P., Weaver, L.H., Keana, J.F., and Griffith, O.H., 1996, Crystal structure of phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with glucosaminyl(alpha 1—>6)-D-myo-inositol, an essential fragment of GPI anchors, Biochemistry 35: 9496–9504.

    Article  PubMed  CAS  Google Scholar 

  • Heller, M., Bieri, S., and Brodbeck, U., 1992, A novel form of glycosylphosphatidylinositolanchor converting activity with a specificity of a phospholipase D in mammalian liver membranes, Biochim. Biophys. Acta 1109:109–116.

    Google Scholar 

  • Hoener, M.C., and Brodbeck, U., 1992, Phosphatidylinositol-glycan-specific phospholipase D is an amphiphilic glycoprotein that in serum is associated with high-density lipoproteins, Eur. J. Biochem. 206: 747–757.

    Article  PubMed  CAS  Google Scholar 

  • Homans, S.W., Ferguson, M.A., Dwek, R.A., Rademacher, T.W., Anand, R., and Williams, A.F., 1988, Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein, Nature 333: 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J.B., Takeda, Y., Watanabe, T., and Sendo, E, 2001, A sandwich ELISA for detection of soluble GPI-80, a glycosylphosphatidyl-inositol (GPI)-anchored protein on human leukocytes involved in regulation of neutrophil adherence and migration — Its release from activated neutrophils and presence in synovial fluid of rheumatoid arthritis patients, Microbiol. Immunol. 45: 467–471.

    PubMed  CAS  Google Scholar 

  • Huang, K.S., Li, S., Fung, W.J., Hulmes, J.D., Reik, L., Pan, Y.C., and Low, M.G., 1990, Purification and characterization of glycosyl-phosphatidylinositol-specific phospholipase D, J. Biol. Chem. 265: 17738–17745.

    PubMed  CAS  Google Scholar 

  • Huizinga, T.W., van der Schoot, C.E., Jost, C., Klaassen, R., Kleijer, M., von dem, B., Roos, D., and Tetteroo, P.A., 1988, The PI-linked receptor FcRIII is released on stimulation of neutrophils, Nature 333: 667–669.

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa, H., 1991, Bacterial PIPLCs-unique properties and usefulness in studies on GPI anchors, Cell Biol. Int. Rep. 15: 1115–1131.

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa, H., 2002, Glycosypphosphatidylinositol (GPI)-anchored proteins, Biol. Pharm. Bull. 25: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Itzhaky, D., Raz, N., and Hollander, N., 1998a, The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58 are released from the cell surface upon antibody binding, Cell Immunol. 187: 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Itzhaky, D., Raz, N., and Hollander, N., 1998b, The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58 associate with protein kinases, J. Immunol. 160: 4361–4366.

    PubMed  CAS  Google Scholar 

  • Jones, D.R., Avila, M.A., Sanz, C., and Varela-Nieto, I., 1997, Glycosyl-phosphatidylinositolphospholipase type D: a possible candidate for the generation of second messengers, Biochem. Biophys. Res. Commun. 233: 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.R., and Varela-Nieto, I., 1998, The role of glycosyl-phosphatidylinositol in signal transduction, Int. J. Biochem. Cell Biol. 30: 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, M., Thorn, H., Parpal, S., Stralfors, P., and Gustaysson, J., 2002, Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes, FASEB J. 16: 249–251.

    PubMed  CAS  Google Scholar 

  • Kessler, A., Müller, G., Wied, S., Crecelius, A., and Eckel, J., 1998, Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue, Biochem. J. 330: 277–286.

    PubMed  CAS  Google Scholar 

  • Kinoshita, T., and Inoue, N., 2000, Dissecting and manipulating the pathway for glyco-sylphosphatidylinositol-anchor biosynthesis, Curr. Opin. Chem. Biol. 4: 632–638.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, T., Ohishi, K., and Takeda, J., 1997, GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency, J. Biochem. (Tokyo) 122: 251–257.

    Article  CAS  Google Scholar 

  • Klip, A., Ramlal, T., Douen, A.G., Burdett, E., Young, D., Cartee, G.D., and Holloszy, J.O., 1988, Insulin-induced decrease in 5’-nucleotidase activity in skeletal muscle membranes, FEBS Lett. 238: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Nishizaki, R., and Ikezawa, H., 1997, The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes, Biochim. Biophys. Acta 1334: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen, S., and Richter, E.A., 2002, GLUT4-containing vesicles are released from membranes by phospholipase D cleavage of a GPI anchor, Am. J. Physiol. Endocrinol. Metab. 283: E374 –E382.

    PubMed  CAS  Google Scholar 

  • Kukulansky, T., Abramovitch, S., and Hollander, N., 1999, Cleavage of the glycosylphosphatidylinositol anchor affects the reactivity of Thy-1 with antibodies, J. Immunol. 162: 5993–5997.

    PubMed  CAS  Google Scholar 

  • Langlet, C., Bernard, A.M., Drevot, P., and He, H.T., 2000, Membrane rafts and signaling by the multichain immune recognition receptors, Curl: Opin. Immunol. 12: 250–255.

    Article  CAS  Google Scholar 

  • Lanier, J., Allan, G., Kessler, C., Reamer, P., Gunn, R., and Huang, L.C., 1998, Phosphoinositol glycan derived mediators and insulin resistance. Prospects for diagnosis and therapy, J. Basic Clin. Physiol Pharmacol. 9: 127–137.

    Google Scholar 

  • Lehto, M.T., and Sharom, F.J., 1998, Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5’-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer, Biochem. J. 332: 101–109.

    PubMed  CAS  Google Scholar 

  • Lehto, M.T., and Sharom, F.J., 2002a, PI-specific phospholipase C cleavage of a reconstituted GPI-anchored protein: modulation by the lipid bilayer, Biochemistry 41:1398–1408.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, M.T., and Sharom, F.J., 2002b, Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study, Biochemistry 41: 8368–8376.

    Article  PubMed  CAS  Google Scholar 

  • Liao, Z.H., Cimakasky, L.M., Hampton, R., Nguyen, D.H., and Hildreth, J.E.K., 2001, Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1, AIDS Res. Hum. Retroviruses 17: 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  • Lisanti, M.P., Darnell, J.C., Chan, B.L., Rodriguez-Boulan, E., and Saltiel, A.R., 1989, The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin, Biochem. Biophys. Res. Commun. 164: 824–832.

    Article  PubMed  CAS  Google Scholar 

  • London, E., and Brown, D.A., 2000, Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts), Biochim. Biophys. Acta. 1508: 182–195.

    Article  PubMed  CAS  Google Scholar 

  • Low, M.G., and Finean, J.B., 1978, Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C, Biochim. Biophys. Acta 508: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Low, M.G., and Huang, K.S., 1991, Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins, Biochem. J. 279: 483–493.

    PubMed  CAS  Google Scholar 

  • Low, M.G., and Prasad, A R., 1988, A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma, Proc. Natl. Acad. Sci. USA 85:980–984.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Lomas, M., Khiar, N., Garcia, S., Koessler, J.L., Nieto, P.M., and Rademacher, T.W., 2000, Inositolphosphoglycan mediators structurally related to glycosyl phosphatidylinositol anchors: synthesis, structure and biological activity, Chemistry 6: 3608–3621.

    Article  PubMed  CAS  Google Scholar 

  • Melkonian, K.A., Chu, T., Tortorella, L.B., and Brown, D.A., 1995, Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells, Biochemistry 34: 16161–16170.

    Article  PubMed  CAS  Google Scholar 

  • Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G., and Brown, D.A., 1999, Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts — Many raft proteins are acylated, while few are prenylated, J. Biol. Chem. 274: 3910–3917.

    Article  PubMed  CAS  Google Scholar 

  • Mengaud, J., Braun-Breton, C., and Cossart, P., 1991, Identification of phosphatidylinositolspecific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor?, Mol. Microbiol. 5: 367–372.

    Article  PubMed  CAS  Google Scholar 

  • Moser, J., Gerstel, B., Meyer, J.E., Chakraborty, T., Wehland, J., and Heinz, D.W., 1997, Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes, J. Mol. Biol. 273: 269–282.

    Article  PubMed  CAS  Google Scholar 

  • Movahedi, S., and Hooper, N.M., 1997, Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3–L1 adipocytes through the action of a phospholipase C, Biochem. J. 326:531–537.

    PubMed  CAS  Google Scholar 

  • Müller, G., 2002, Dynamics of plasma membrane microdomains and cross-talk to the insulin signalling cascade, FEBS Lett. 531:81–87.

    Article  PubMed  Google Scholar 

  • Müller, G., and Bandlow, W, 1993, Glucose induces lipolytic cleavage of a glycolipidic plasma membrane anchor in yeast, J Cell Biol. 122:325–336.

    Article  PubMed  Google Scholar 

  • Müller, G., and Bandlow, W, 1994, Lipolytic membrane release of two phosphatidylinositolanchored cAMP receptor proteins in yeast alters their ligand-binding parameters, Arch. Biochem. Biophys. 308: 504–514.

    Article  PubMed  Google Scholar 

  • Müller, G., Dearey, E.A., Korndorfer, A., and Bandlow, W, 1994, Stimulation of a glycosylphosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport, J. Cell Biol. 126:1267–1276.

    Article  PubMed  Google Scholar 

  • Müller, G., Dearey, E.A., and Punter, J., 1993, The sulphonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma-membrane proteins from 3T3 adipocytes, Biochem. J. 289: 509–521.

    PubMed  Google Scholar 

  • Müller, G., Hanekop, N., Kramer, W, Bandlow, W, and Frick, W, 2002a, Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes, Arch. Biochem. Biophys. 408:17–32.

    Article  PubMed  Google Scholar 

  • Müller, G., Hanekop, N., Wied, S., and Frick, W, 2002b, Cholesterol depletion blocks redistribution of lipid raft components and insulin-mimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes, Mol. Med. 8: 120–136.

    PubMed  Google Scholar 

  • Müller, G., Jung, C., Frick, W, Bandlow, W, and Kramer, W, 2002c, Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes, Arch. Biochem. Biophys. 408: 7–16.

    Article  PubMed  Google Scholar 

  • Müller, G., Jung, C., Wied, S., Welte, S., and Frick, W, 2001, Insulinmimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components, Biochemistry 40:14603–14620.

    Article  PubMed  CAS  Google Scholar 

  • Müller, G., Rouveyre, N., Crecelius, A., and Bandlow, W., 1998a, Insulin signaling in the yeast Saccharomyces cerevisiae. 1. Stimulation of glucose metabolism and Snfl kinase by human insulin, Biochemistry 37: 8683–8695.

    Article  PubMed  Google Scholar 

  • Müller, G., Rouveyre, N., Upshon, C., and Bandlow, W, 1998b, Insulin signaling in the yeast Saccharomyces cerevisiae. 3. Induction of protein phosphorylation by human insulin, Biochemistry 37:8705–8713.

    Article  PubMed  Google Scholar 

  • Müller, G., Rouveyre, N., Upshon, C., Grobeta, E., and Bandlow, W, 1998c, Insulin signaling in the yeast Saccharomyces cerevisiae. 2. Interaction of human insulin with a putative binding protein, Biochemistry 37:8696–8704.

    Article  Google Scholar 

  • Müller, G., Wied, S., Crecelius, A., Kessler, A., and Eckel, J., 1997, Phosphoinositolglycanpeptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms, Endocrinology 138: 3459–3475.

    Article  PubMed  Google Scholar 

  • Müller, G., Wied, S., Piossek, C., Bauer, A., Bauer, J., and Frick, W, 1998d, Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans, Mol. Med. 4: 299–323.

    PubMed  Google Scholar 

  • Muíïiz, M., and Riezman, H., 2000, Intracellular transport of GPI-anchored proteins, EMBO J. 19: 10–15.

    Article  Google Scholar 

  • Nazih-Sanderson, E, Lestavel, S., Nion, S., Rouy, D., Denefle, P., Fruchart, J.C., Clayey, V, and Delbart, C., 1997a, HDL3 binds to glycosylphosphatidylinositol-anchored proteins to activate signalling pathways, Biochim. Biophys. Acta 1358:103–112.

    Article  PubMed  Google Scholar 

  • Nazih-Sanderson, F., Pinchon, G., Nion, S., Fruchart, J.C., and Delbart, C., 1997b, HDL3signalling in HepG2 cells involves glycosyl-phosphatidylinositol-anchored proteins, Biochim. Biophys. Acta 1346: 45–60.

    Article  PubMed  CAS  Google Scholar 

  • Nion, S., Briand, O., Lestavel, S., Torpier, G., Nazih, E, Delbart, C., Fruchart, J.C., and Clayey, V., 1997, High-density-lipoprotein subfraction 3 interaction with glycosylphosphatidylinositolanchored proteins, Biochem. J. 328: 415–423.

    PubMed  CAS  Google Scholar 

  • Park, S.W., Choi, K., Kim, I.C., Lee, H.H., Hooper, N.M., and Park, H.S., 2001, Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro, Biochem. J. 353: 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.W., Choi, K., Lee, H.B., Park, S.K., Turner, A.J., Hooper, N.M., and Park, H.S., 2002a, Glycosyl-phosphatidylinositol (GPI)-anchored renal dipeptidase is released by a phospholipase C in vivo, Kidney Blood Press Res. 25: 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.W., Yoon, H.J., Lee, H.B., Hooper, N.M., and Park, H.S., 2002b, Nitric oxide inhibits the shedding of the glycosylphosphatidylinositol-anchored dipeptidase from porcine renal proximal tubules, Biochem. J. 364: 211–218.

    PubMed  CAS  Google Scholar 

  • Parpal, S., Karlsson, M., Thorn, H., and Stralfors, P., 2001, Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but notet for mitogen-activated protein kinase control, J Biol. Chem. 276: 9670–9678.

    Article  PubMed  CAS  Google Scholar 

  • Petitfrere, E., Sartelet, H., Vivien, D., Varela-Nieto, I., Elbtaouri, H., Martiny, L., and Haye, B., 1998, Glycosyl phosphatidylinositol (GPI)/inositolphosphate glycan (IPG): an intracellular signalling system involved in the control of thyroid cell proliferation, Biochimie. J. 80:1063–1067.

    Article  CAS  Google Scholar 

  • Piec, G.,and Le Hir, M., 1991, The soluble “low-Km” 5’-nucleotidase of rat kidney represents solubilized ecto-5’-nucleotidase, Biochem. J 273:409–413.

    PubMed  CAS  Google Scholar 

  • Pralle, A., Keller, P., Florin, E.L., Simons, K., and Hörber, J.K.H., 2000, Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells, J. Cell Biol. 148: 997–1007.

    Article  PubMed  CAS  Google Scholar 

  • Rademacher, T.W., Edge, C.J., and Dwek, R.A., 1991, Dropping anchor with the lipophosphoglycans, Glycobiology 1: 41–42.

    Article  CAS  Google Scholar 

  • Reid-Taylor, K.L., Chu, J.W K., and Sharom, F.J., 1999, Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide, Biochem. Cell Biol. 77: 189–200.

    Article  PubMed  CAS  Google Scholar 

  • Rietveld, A., and Simons, K., 1998, The differential miscibility of lipids as the basis for the formation of functional membrane rafts, Biochim. Biophys. Acta 1376: 467–479.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J.M., Kenton, P., and Johnson, P.M., 1990, Growth factor-induced release of a glycosyl-phosphatidylinositol (GPI)-linked protein from the HEp-2 human carcinoma cell line, FEBS Lett. 267: 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W.L., Myher, J.J., Kuksis, A., Low, M.G., and Rosenberry, T.L., 1988, Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C, J. Biol. Chem. 263: 18766–18775.

    PubMed  CAS  Google Scholar 

  • Romero, G., Luttrell, L., Rogol, A., Zeller, K., Hewlett, E., and Lamer, J., 1988, Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators, Science 240:509–511.

    Article  Google Scholar 

  • Rosenberger, C.M., Brumell, J.H., and Finlay, B.B., 2000, Microbial pathogenesis: Lipid rafts as pathogen portals, Curr. Biol. 10: R823 – R825.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberry, T.L., 1991, A chemical modification that makes glycoinositol phospholipids resistant to phospholipase C cleavage: fatty acid acylation of inositol, Cell Biol. Int. Rep. 15: 1133–1150.

    Article  PubMed  CAS  Google Scholar 

  • Salzer, U., and Prohaska, R., 2001, Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts, Blood 97: 1141–1143.

    Article  PubMed  CAS  Google Scholar 

  • Santos, A.L., Abreu, C.M., Alviano, C.S., and Soares, R.M., 2002, Activation of the glycosylphosphatidylinositol-anchored membrane proteinase upon release from Herpetomonas samuelpessoai by phospholipase C, Curr. Microbiol. 45: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, R., London, E., and Brown, D.A., 1994, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI- anchored proteins in liposomes and cells show similar behavior, Proc. Natl. Acad. Sci. USA 91:12130–12134.

    Article  PubMed  CAS  Google Scholar 

  • Sharom, F.J., and Lehto, M.T., 2002, GPI-anchored proteins: structure, function, and cleavage by PI-specific phospholipases, Biochem. Cell Biol. 80: 535–549.

    Article  PubMed  CAS  Google Scholar 

  • Sharom, F.J., Lorimer, I., and Lamb, M.P., 1985, Reconstitution of lymphocyte 5’-nucleotidase in lipid bilayers: behaviour and interaction with concanavalin A, Can. J. Biochem. Cell Biol. 63: 1049–1057.

    Article  PubMed  CAS  Google Scholar 

  • Sharom, F.J., McNeil, G.L., Glover, J.R., and Seier, S., 1996, Modulation of the cleavage of glycosylphosphatidylinositol-anchored proteins by specific bacterial phospholipases, Biochem. Cell Biol. 74: 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Sheets, E.D., Lee, G.M., Simson, R., and Jacobson, K., 1997, Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane, Biochemistry 36:12449–12458.

    Article  PubMed  CAS  Google Scholar 

  • Shigematsu, S., Watson, R.T., Khan, A.H., and Pessin, J.E., 2003, The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4, J. Biol. Chem. 278:10683–10690.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Ikonen, E., 1997, Functional rafts in cell membranes, Nature 387:569–572.

    Article  PubMed  CAS  Google Scholar 

  • Singh, N., Liang, L.N., Tykocinski, M.L., and Tartakoff, A.M., 1996, A novel class of cell surface glycolipids of mammalian cells. Free glycosyl phosphatidylinositols, J. Biol. Chem. 271:12879–12884.

    Article  PubMed  CAS  Google Scholar 

  • Tam, B.Y., Larouche, D., Germain, L., Hooper, N.M., and Philip, A., 2001, Characterization of a 150 kDa accessory receptor for TGF-beta 1 on keratinocytes: direct evidence for a GPI anchor and ligand binding of the released form, J. Cell Biochem. 83: 494–507.

    Article  PubMed  CAS  Google Scholar 

  • Tsujioka, H., Misumi, Y., Takami, N., and Ikehara, Y., 1998, Posttranslational modification of glycosylphosphatidylinositol (GPI)-specific phospholipase D and its activity in cleavage of GPI anchors, Biochem. Biophys. Res. Commun. 251: 737–743.

    Article  PubMed  CAS  Google Scholar 

  • Tsujioka, H., Takami, N., Misumi, Y., and Ikehara, Y., 1999, Intracellular cleavage of glycosylphosphatidylinositol by phospholipase D induces activation of protein kinase Calpha, Biochem. J. 342: 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Varela-Nieto, I., Leon, Y., and Caro, H.N., 1996, Cell signalling by inositol phosphoglycans from different species, Comp. Biochem. Physiol. B 115: 223–241.

    Article  PubMed  CAS  Google Scholar 

  • Vanua, R., and Mayor, S., 1998, GPI-anchored proteins are organized in submicron domains at the cell surface, Nature 394: 798–801.

    Article  CAS  Google Scholar 

  • Villalba, M., Alvarez, J.F., Russell, D.S., Mato, J.M., and Rosen, O.M., 1990, Hydrolysis of glycosyl-phosphatidylinositol in response to insulin is reduced in cells bearing kinase-deficient insulin receptors, Growth Factors 2: 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Villar, A.V., Goni, F.M., Alonso, A., Jones, D.R., Leon, Y., and Varela-Nieto, I., 1998, Phospholipase cleavage of glycosylphosphatidylinositol reconstituted in liposomal membranes, FEBS Lett. 432: 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S., Gerlier, D., and Manié, S.N., 2000, Measles virus assembly within membrane rafts, J. Virol. 74: 9911–9915.

    Article  PubMed  CAS  Google Scholar 

  • Viola, A., 2001, The amplification of TCR signaling by dynamic membrane microdomains, Immunol. Today 22: 322–327.

    CAS  Google Scholar 

  • Vogel, M., Kowalewski, H., Zimmermann, H., Hooper, N.M., and Turner, A.J., 1992, Soluble low-Km 5’-nucleotidase from electricray (Torpedo marmorata) electric organ and bovine cerebral cortex is derived from the glycosyl-phosphatidylinositol-anchored ectoenzyme by phospholipase C cleavage, Biochem. J. 284: 621–624.

    PubMed  CAS  Google Scholar 

  • Wang, X., Jansen, G., Fan, J., Kohler, W.J., Ross, J.F., Schornagel, J., and Ratnam, M., 1996, Variant GPI structure in relation to membrane-associated functions of a murine folate receptor, Biochemistry 35:16305–16312.

    Article  PubMed  CAS  Google Scholar 

  • Webb, H., Carnall, N., Vanhamme, L, Rolin, S., Van Den, A.J., Welburn, S., Pays, E., and Carrington, M., 1997, The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice, J. Cell Biol. 139:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, C.B., Furlong, J., Burgos, P., and Johnston, L.J., 2002, The size of lipid rafts: An atomic force microscopy study of ganglioside GMl domains in sphingomyelin/DOPC/ cholesterol membranes, Biophys. J. 82: 2526–2535.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharom, F.J., Radeva, G. (2004). GPI-anchored Protein Cleavage in the Regulation of Transmembrane Signals. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics