GPI-anchored Protein Cleavage in the Regulation of Transmembrane Signals

  • Frances J. Sharom
  • Galina Radeva
Part of the Subcellular Biochemistry book series (SCBI, volume 37)

Abstract

The structure of covalently-linked glycosylphosphatidylinositol (GPI) anchors of membrane proteins displayed on the cell surface is described. Evidence of how the GPI-anchors are sorted into membrane rafts in the plasma membrane is reviewed. Proteins are released by hydrolysis of the linkage to the GPI anchor and phospholipases from different sources involved in this process are characterised. The regulation of protein conformation and function resulting from phospholipase cleavage of the GPI anchor is discussed in the context of its role in signal transduction by insulin. In this signalling system, re-distribution of critical membrane components, including GPI-anchored proteins and non-receptor tyrosine kinases, between different raft domains appears to play a central role in the signal transduction pathway.

Keywords

Lipid Raft Membrane Raft Variant Surface Glycoprotein Raft Domain Insulin Signalling Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S.N., Brown, D.A., and London, E., 1997, On the origin of sphingolipid/cholesterolrich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes, Biochemistry 36: 10944–10953.PubMedCrossRefGoogle Scholar
  2. Almeida, P.F., Vaz, W.L., and Thompson, T.E., 1992, Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer, Biochemistry 31: 7198–7210.PubMedCrossRefGoogle Scholar
  3. Almqvist, P. and Carlsson, S.R., 1988, Characterization of a hydrophilic form of Thy-1 purified from human cerebrospinal fluid, J. Biol. Chem. 263: 12709–12715.PubMedGoogle Scholar
  4. Barboni, E., Rivero, B.P., George, A.J., Martin, S.R., Renoup, D.V., Hounsell, E.E, Barber, P.C., and Morris, R.J., 1995, The glycophosphatidylinositol anchor affects the conformation of Thy-1 protein, J. Cell Sci. 108: 487–497.PubMedGoogle Scholar
  5. Benting, J., Rietveld, A., Ansorge, I., and Simons, K., 1999, Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro, FEBS Lett. 462: 47–50.PubMedCrossRefGoogle Scholar
  6. Bickel, P.E., 2002, Lipid rafts and insulin signaling, Am. J. Physiol. Endocrinol. Metab. 282: E1 – E10.PubMedGoogle Scholar
  7. Brasitus, T.A. and Schachter, D., 1980, Lipid dynamics and lipid-protein interactions in rat enterocyte basolateral and microvillus membranes, Biochemistry 19: 2763–2769.PubMedCrossRefGoogle Scholar
  8. Braun-Breton, C., Rosenberry, T.L., and da Silva, L.P., 1988, Induction of the proteolytic activity of a membrane protein in Plasmodium falciparum by phosphatidyl inositolspecific phospholipase C, Nature 332: 457–459.PubMedCrossRefGoogle Scholar
  9. Brewis, I.A., Turner, A.J., and Hooper, N.M., 1994, Activation of the glycosylphosphatidylinositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C, Biochem. J. 303: 633–638.PubMedGoogle Scholar
  10. Brodbeck, U., 1998, Signalling properties of glycosylphosphatidylinositols and their regulated release from membranes in the turnover of glycosylphosphatidylinositol-anchored proteins, Biol. Chem. Hoppe Seyler 379:1041–1044.Google Scholar
  11. Broomfield, S.J., and Hooper, N.M., 1993, Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase, Biochim. Biophys. Acta 1145: 212–218.PubMedCrossRefGoogle Scholar
  12. Cary, L.A., and Cooper, J.A., 2000, Signal transduction — Molecular switches in lipid rafts, Nature 404:945–947.Google Scholar
  13. Cebecauer, M., Cerny, J., and Horejsi, V., 1998, Incorporation of leucocyte GPI-anchored proteins and protein tyrosine kinases into lipid-rich membrane domains of COS-7 cells, Biochem. Biophys. Res. Commun. 243: 706–710.PubMedCrossRefGoogle Scholar
  14. Chan, B.L., Lisanti, M.P., Rodriguez-Boulan, E., and Saltiel, A.R., 1988, Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor, Science 241:1670–1672.Google Scholar
  15. Cherukuri, A., Dykstra, M., and Pierce, S.K., 2001, Floating the raft hypothesis: Lipid rafts play a role in immune cell activation, Immunity 14: 657–660.PubMedCrossRefGoogle Scholar
  16. Daugherty, S., and Low, M.G., 1993, Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor, Infect. Immun. 61: 5078–5089.PubMedGoogle Scholar
  17. Davitz, M.A., Hereld, D., Shak, S., Krakow, J., Englund, P.T., and Nussenzweig, V., 1987, A glycan-phosphatidylinositol-specific phospholipase D in human serum, Science 238: 81–84.PubMedCrossRefGoogle Scholar
  18. Deeg, M.A., and Davitz, M.A., 1995, Glycosylphosphatidylinositol-phospholipase D: a tool for glycosylphosphatidylinositol structural analysis, Methods Enzymol. 250: 630–640.PubMedCrossRefGoogle Scholar
  19. Deeg, M.A., and Verchere, C.B., 1997, Regulation of glycosylphosphatidylinositol-specific phospholipase D secretion from beta TC3 cells, Endocrinology 138:819–826.Google Scholar
  20. Durbin, H., Young, S., Stewart, L.M., Wrba, E, Rowan, A.J., Snary, D., and Bodmer, W.F., 1994, An epitope on carcinoembryonic antigen defined by the clinically relevant antibody PR1A3, Proc. Natl. Acad. Sci. USA 91: 4313–4317.PubMedCrossRefGoogle Scholar
  21. Eisenhaber, B., Bork, E, and Eisenhaber, E, 2001, Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes, Protein Eng. 14: 17–25.PubMedCrossRefGoogle Scholar
  22. Eisenhaber, B., Bork, P., Yuan, Y.P., Löffler, G., and Eisenhaber, E, 2000, Automated annotation of GPI anchor sites: case study C. elegans, Trends Biochem. Sci. 25: 340–341.PubMedCrossRefGoogle Scholar
  23. Eliakim, R., Becich, M.J., Green, K., and Alpers, D.H., 1990, Both tissue and serum phospholipases release rat intestinal alkaline phosphatase, Am. J. Physiol. 259: G618 – G625.PubMedGoogle Scholar
  24. Fantini, J., Maresca, M., Hannnache, D., Yahi, N., and Delézay, 0., 2000, Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: Activation of signal transduction pathways and perturbations of intestinal absorption and secretion, Glycoconjugate J. 17:173–179.CrossRefGoogle Scholar
  25. Ferguson, M.A., Low, M.G., and Cross, G.A., 1985, Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein, J. Biol. Chem. 260: 14547–14555.PubMedGoogle Scholar
  26. Freedman, S.D., Kern, H.F., and Scheele, G.A., 1998, Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells, Eur. J. Cell Biol. 75: 163–173.PubMedCrossRefGoogle Scholar
  27. Frick, W, Bauer, A., Bauer, J., Wied, S., and Müller, G., 1998, Structure-activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action, Biochemistry 37: 13421–13436.PubMedCrossRefGoogle Scholar
  28. Friedrichson, T., and Kurzchalia, T.V., 1998, Microdomains of GPI-anchored proteins in living cells revealed by crosslinking, Nature 394: 802–805.PubMedCrossRefGoogle Scholar
  29. Giocondi, M.C., Vié, V, Lesniewska, E., Goudonnet, J.P., and Le Grimellec, C., 2000, In situ imaging of detergent-resistant membranes by atomic force microscopy, J. Struct. Biol. 131: 38–43.Google Scholar
  30. Gmachl, M., Sagan, S., Ketter, S., and Kreil, G., 1993, The human sperm protein PH-20 has hyaluronidase activity, FEBS Lett. 336: 545–548.PubMedCrossRefGoogle Scholar
  31. Griffith, O.H., Volwerk, J.J., and Kuppe, A., 1991, Phosphatidylinositol-specific phospholipases C from Bacillus cereus and Bacillus thuringiensis, Methods Enzymol. 197: 493–502.Google Scholar
  32. Gustaysson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K.H., Magnusson, K., and Strâlfors, P., 1999, Localization of the insulin receptor in caveolae of adipocyte plasma membrane, FASEB J. 13: 1961–1971.Google Scholar
  33. Hanada, K., Nishijima, M., Akamatsu, Y., and Pagano, R.E., 1995, Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a g1ycosylphosphatidylinositol-anchored protein, in mammalian membranes, J. Biol. Chem. 270: 6254–6260.PubMedCrossRefGoogle Scholar
  34. Hansen, G.H., Immerdal, L., Thorsen, E., Niels-Christiansen, L.L., Nystrom, B.T., Demant, E.J.F., and Danielsen, E.M., 2001, Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes, J. Biol. Chem. 276: 32338–32344.PubMedCrossRefGoogle Scholar
  35. Hari, T., Butikofer, P., Wiesmann, U.N., and Brodbeck, U., 1997, Uptake and intracellular stability of glycosylphosphatidylinositol-specific phospholipase D in neuroblastoma cells, Biochim. Biophys. Acta 1355: 293–302.PubMedCrossRefGoogle Scholar
  36. Hari, T., Kunze, H., Bohn, E., Brodbeck, U., and Butikofer, P., 1996, Subcellular distribution of glycosylphosphatidylinositol-specific phospholipase D in rat liver, Biochem. J. 320: 315–319.PubMedGoogle Scholar
  37. Heinz, D.W., Ryan, M., Bullock, T.L., and Griffith, O.H., 1995, Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myoinositol, EMBO J. 14: 3855–3863.PubMedGoogle Scholar
  38. Heinz, D.W., Ryan, M., Smith, M.P., Weaver, L.H., Keana, J.F., and Griffith, O.H., 1996, Crystal structure of phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with glucosaminyl(alpha 1—>6)-D-myo-inositol, an essential fragment of GPI anchors, Biochemistry 35: 9496–9504.PubMedCrossRefGoogle Scholar
  39. Heller, M., Bieri, S., and Brodbeck, U., 1992, A novel form of glycosylphosphatidylinositolanchor converting activity with a specificity of a phospholipase D in mammalian liver membranes, Biochim. Biophys. Acta 1109:109–116.Google Scholar
  40. Hoener, M.C., and Brodbeck, U., 1992, Phosphatidylinositol-glycan-specific phospholipase D is an amphiphilic glycoprotein that in serum is associated with high-density lipoproteins, Eur. J. Biochem. 206: 747–757.PubMedCrossRefGoogle Scholar
  41. Homans, S.W., Ferguson, M.A., Dwek, R.A., Rademacher, T.W., Anand, R., and Williams, A.F., 1988, Complete structure of the glycosyl phosphatidylinositol membrane anchor of rat brain Thy-1 glycoprotein, Nature 333: 269–272.PubMedCrossRefGoogle Scholar
  42. Huang, J.B., Takeda, Y., Watanabe, T., and Sendo, E, 2001, A sandwich ELISA for detection of soluble GPI-80, a glycosylphosphatidyl-inositol (GPI)-anchored protein on human leukocytes involved in regulation of neutrophil adherence and migration — Its release from activated neutrophils and presence in synovial fluid of rheumatoid arthritis patients, Microbiol. Immunol. 45: 467–471.PubMedGoogle Scholar
  43. Huang, K.S., Li, S., Fung, W.J., Hulmes, J.D., Reik, L., Pan, Y.C., and Low, M.G., 1990, Purification and characterization of glycosyl-phosphatidylinositol-specific phospholipase D, J. Biol. Chem. 265: 17738–17745.PubMedGoogle Scholar
  44. Huizinga, T.W., van der Schoot, C.E., Jost, C., Klaassen, R., Kleijer, M., von dem, B., Roos, D., and Tetteroo, P.A., 1988, The PI-linked receptor FcRIII is released on stimulation of neutrophils, Nature 333: 667–669.PubMedCrossRefGoogle Scholar
  45. Ikezawa, H., 1991, Bacterial PIPLCs-unique properties and usefulness in studies on GPI anchors, Cell Biol. Int. Rep. 15: 1115–1131.PubMedCrossRefGoogle Scholar
  46. Ikezawa, H., 2002, Glycosypphosphatidylinositol (GPI)-anchored proteins, Biol. Pharm. Bull. 25: 409–417.PubMedCrossRefGoogle Scholar
  47. Itzhaky, D., Raz, N., and Hollander, N., 1998a, The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58 are released from the cell surface upon antibody binding, Cell Immunol. 187: 151–157.PubMedCrossRefGoogle Scholar
  48. Itzhaky, D., Raz, N., and Hollander, N., 1998b, The glycosylphosphatidylinositol-anchored form and the transmembrane form of CD58 associate with protein kinases, J. Immunol. 160: 4361–4366.PubMedGoogle Scholar
  49. Jones, D.R., Avila, M.A., Sanz, C., and Varela-Nieto, I., 1997, Glycosyl-phosphatidylinositolphospholipase type D: a possible candidate for the generation of second messengers, Biochem. Biophys. Res. Commun. 233: 432–437.PubMedCrossRefGoogle Scholar
  50. Jones, D.R., and Varela-Nieto, I., 1998, The role of glycosyl-phosphatidylinositol in signal transduction, Int. J. Biochem. Cell Biol. 30: 313–326.PubMedCrossRefGoogle Scholar
  51. Karlsson, M., Thorn, H., Parpal, S., Stralfors, P., and Gustaysson, J., 2002, Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes, FASEB J. 16: 249–251.PubMedGoogle Scholar
  52. Kessler, A., Müller, G., Wied, S., Crecelius, A., and Eckel, J., 1998, Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue, Biochem. J. 330: 277–286.PubMedGoogle Scholar
  53. Kinoshita, T., and Inoue, N., 2000, Dissecting and manipulating the pathway for glyco-sylphosphatidylinositol-anchor biosynthesis, Curr. Opin. Chem. Biol. 4: 632–638.PubMedCrossRefGoogle Scholar
  54. Kinoshita, T., Ohishi, K., and Takeda, J., 1997, GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency, J. Biochem. (Tokyo) 122: 251–257.CrossRefGoogle Scholar
  55. Klip, A., Ramlal, T., Douen, A.G., Burdett, E., Young, D., Cartee, G.D., and Holloszy, J.O., 1988, Insulin-induced decrease in 5’-nucleotidase activity in skeletal muscle membranes, FEBS Lett. 238: 419–423.PubMedCrossRefGoogle Scholar
  56. Kobayashi, T., Nishizaki, R., and Ikezawa, H., 1997, The presence of GPI-linked protein(s) in an archaeobacterium, Sulfolobus acidocaldarius, closely related to eukaryotes, Biochim. Biophys. Acta 1334: 1–4.PubMedCrossRefGoogle Scholar
  57. Kristiansen, S., and Richter, E.A., 2002, GLUT4-containing vesicles are released from membranes by phospholipase D cleavage of a GPI anchor, Am. J. Physiol. Endocrinol. Metab. 283: E374 –E382.PubMedGoogle Scholar
  58. Kukulansky, T., Abramovitch, S., and Hollander, N., 1999, Cleavage of the glycosylphosphatidylinositol anchor affects the reactivity of Thy-1 with antibodies, J. Immunol. 162: 5993–5997.PubMedGoogle Scholar
  59. Langlet, C., Bernard, A.M., Drevot, P., and He, H.T., 2000, Membrane rafts and signaling by the multichain immune recognition receptors, Curl: Opin. Immunol. 12: 250–255.CrossRefGoogle Scholar
  60. Lanier, J., Allan, G., Kessler, C., Reamer, P., Gunn, R., and Huang, L.C., 1998, Phosphoinositol glycan derived mediators and insulin resistance. Prospects for diagnosis and therapy, J. Basic Clin. Physiol Pharmacol. 9: 127–137.Google Scholar
  61. Lehto, M.T., and Sharom, F.J., 1998, Release of the glycosylphosphatidylinositol-anchored enzyme ecto-5’-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer, Biochem. J. 332: 101–109.PubMedGoogle Scholar
  62. Lehto, M.T., and Sharom, F.J., 2002a, PI-specific phospholipase C cleavage of a reconstituted GPI-anchored protein: modulation by the lipid bilayer, Biochemistry 41:1398–1408.PubMedCrossRefGoogle Scholar
  63. Lehto, M.T., and Sharom, F.J., 2002b, Proximity of the protein moiety of a GPI-anchored protein to the membrane surface: a FRET study, Biochemistry 41: 8368–8376.PubMedCrossRefGoogle Scholar
  64. Liao, Z.H., Cimakasky, L.M., Hampton, R., Nguyen, D.H., and Hildreth, J.E.K., 2001, Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1, AIDS Res. Hum. Retroviruses 17: 1009–1019.PubMedCrossRefGoogle Scholar
  65. Lisanti, M.P., Darnell, J.C., Chan, B.L., Rodriguez-Boulan, E., and Saltiel, A.R., 1989, The distribution of glycosyl-phosphatidylinositol anchored proteins is differentially regulated by serum and insulin, Biochem. Biophys. Res. Commun. 164: 824–832.PubMedCrossRefGoogle Scholar
  66. London, E., and Brown, D.A., 2000, Insolubility of lipids in Triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts), Biochim. Biophys. Acta. 1508: 182–195.PubMedCrossRefGoogle Scholar
  67. Low, M.G., and Finean, J.B., 1978, Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C, Biochim. Biophys. Acta 508: 565–570.PubMedCrossRefGoogle Scholar
  68. Low, M.G., and Huang, K.S., 1991, Factors affecting the ability of glycosylphosphatidylinositol-specific phospholipase D to degrade the membrane anchors of cell surface proteins, Biochem. J. 279: 483–493.PubMedGoogle Scholar
  69. Low, M.G., and Prasad, A R., 1988, A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma, Proc. Natl. Acad. Sci. USA 85:980–984.PubMedCrossRefGoogle Scholar
  70. Martin-Lomas, M., Khiar, N., Garcia, S., Koessler, J.L., Nieto, P.M., and Rademacher, T.W., 2000, Inositolphosphoglycan mediators structurally related to glycosyl phosphatidylinositol anchors: synthesis, structure and biological activity, Chemistry 6: 3608–3621.PubMedCrossRefGoogle Scholar
  71. Melkonian, K.A., Chu, T., Tortorella, L.B., and Brown, D.A., 1995, Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells, Biochemistry 34: 16161–16170.PubMedCrossRefGoogle Scholar
  72. Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G., and Brown, D.A., 1999, Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts — Many raft proteins are acylated, while few are prenylated, J. Biol. Chem. 274: 3910–3917.PubMedCrossRefGoogle Scholar
  73. Mengaud, J., Braun-Breton, C., and Cossart, P., 1991, Identification of phosphatidylinositolspecific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor?, Mol. Microbiol. 5: 367–372.PubMedCrossRefGoogle Scholar
  74. Moser, J., Gerstel, B., Meyer, J.E., Chakraborty, T., Wehland, J., and Heinz, D.W., 1997, Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes, J. Mol. Biol. 273: 269–282.PubMedCrossRefGoogle Scholar
  75. Movahedi, S., and Hooper, N.M., 1997, Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3–L1 adipocytes through the action of a phospholipase C, Biochem. J. 326:531–537.PubMedGoogle Scholar
  76. Müller, G., 2002, Dynamics of plasma membrane microdomains and cross-talk to the insulin signalling cascade, FEBS Lett. 531:81–87.PubMedCrossRefGoogle Scholar
  77. Müller, G., and Bandlow, W, 1993, Glucose induces lipolytic cleavage of a glycolipidic plasma membrane anchor in yeast, J Cell Biol. 122:325–336.PubMedCrossRefGoogle Scholar
  78. Müller, G., and Bandlow, W, 1994, Lipolytic membrane release of two phosphatidylinositolanchored cAMP receptor proteins in yeast alters their ligand-binding parameters, Arch. Biochem. Biophys. 308: 504–514.PubMedCrossRefGoogle Scholar
  79. Müller, G., Dearey, E.A., Korndorfer, A., and Bandlow, W, 1994, Stimulation of a glycosylphosphatidylinositol-specific phospholipase by insulin and the sulfonylurea, glimepiride, in rat adipocytes depends on increased glucose transport, J. Cell Biol. 126:1267–1276.PubMedCrossRefGoogle Scholar
  80. Müller, G., Dearey, E.A., and Punter, J., 1993, The sulphonylurea drug, glimepiride, stimulates release of glycosylphosphatidylinositol-anchored plasma-membrane proteins from 3T3 adipocytes, Biochem. J. 289: 509–521.PubMedGoogle Scholar
  81. Müller, G., Hanekop, N., Kramer, W, Bandlow, W, and Frick, W, 2002a, Interaction of phosphoinositolglycan(-peptides) with plasma membrane lipid rafts of rat adipocytes, Arch. Biochem. Biophys. 408:17–32.PubMedCrossRefGoogle Scholar
  82. Müller, G., Hanekop, N., Wied, S., and Frick, W, 2002b, Cholesterol depletion blocks redistribution of lipid raft components and insulin-mimetic signaling by glimepiride and phosphoinositolglycans in rat adipocytes, Mol. Med. 8: 120–136.PubMedGoogle Scholar
  83. Müller, G., Jung, C., Frick, W, Bandlow, W, and Kramer, W, 2002c, Interaction of phosphatidylinositolglycan(-peptides) with plasma membrane lipid rafts triggers insulin-mimetic signaling in rat adipocytes, Arch. Biochem. Biophys. 408: 7–16.PubMedCrossRefGoogle Scholar
  84. Müller, G., Jung, C., Wied, S., Welte, S., and Frick, W, 2001, Insulinmimetic signaling by the sulfonylurea glimepiride and phosphoinositolglycans involves distinct mechanisms for redistribution of lipid raft components, Biochemistry 40:14603–14620.PubMedCrossRefGoogle Scholar
  85. Müller, G., Rouveyre, N., Crecelius, A., and Bandlow, W., 1998a, Insulin signaling in the yeast Saccharomyces cerevisiae. 1. Stimulation of glucose metabolism and Snfl kinase by human insulin, Biochemistry 37: 8683–8695.PubMedCrossRefGoogle Scholar
  86. Müller, G., Rouveyre, N., Upshon, C., and Bandlow, W, 1998b, Insulin signaling in the yeast Saccharomyces cerevisiae. 3. Induction of protein phosphorylation by human insulin, Biochemistry 37:8705–8713.PubMedCrossRefGoogle Scholar
  87. Müller, G., Rouveyre, N., Upshon, C., Grobeta, E., and Bandlow, W, 1998c, Insulin signaling in the yeast Saccharomyces cerevisiae. 2. Interaction of human insulin with a putative binding protein, Biochemistry 37:8696–8704.CrossRefGoogle Scholar
  88. Müller, G., Wied, S., Crecelius, A., Kessler, A., and Eckel, J., 1997, Phosphoinositolglycanpeptides from yeast potently induce metabolic insulin actions in isolated rat adipocytes, cardiomyocytes, and diaphragms, Endocrinology 138: 3459–3475.PubMedCrossRefGoogle Scholar
  89. Müller, G., Wied, S., Piossek, C., Bauer, A., Bauer, J., and Frick, W, 1998d, Convergence and divergence of the signaling pathways for insulin and phosphoinositolglycans, Mol. Med. 4: 299–323.PubMedGoogle Scholar
  90. Muíïiz, M., and Riezman, H., 2000, Intracellular transport of GPI-anchored proteins, EMBO J. 19: 10–15.CrossRefGoogle Scholar
  91. Nazih-Sanderson, E, Lestavel, S., Nion, S., Rouy, D., Denefle, P., Fruchart, J.C., Clayey, V, and Delbart, C., 1997a, HDL3 binds to glycosylphosphatidylinositol-anchored proteins to activate signalling pathways, Biochim. Biophys. Acta 1358:103–112.PubMedCrossRefGoogle Scholar
  92. Nazih-Sanderson, F., Pinchon, G., Nion, S., Fruchart, J.C., and Delbart, C., 1997b, HDL3signalling in HepG2 cells involves glycosyl-phosphatidylinositol-anchored proteins, Biochim. Biophys. Acta 1346: 45–60.PubMedCrossRefGoogle Scholar
  93. Nion, S., Briand, O., Lestavel, S., Torpier, G., Nazih, E, Delbart, C., Fruchart, J.C., and Clayey, V., 1997, High-density-lipoprotein subfraction 3 interaction with glycosylphosphatidylinositolanchored proteins, Biochem. J. 328: 415–423.PubMedGoogle Scholar
  94. Park, S.W., Choi, K., Kim, I.C., Lee, H.H., Hooper, N.M., and Park, H.S., 2001, Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro, Biochem. J. 353: 339–344.PubMedCrossRefGoogle Scholar
  95. Park, S.W., Choi, K., Lee, H.B., Park, S.K., Turner, A.J., Hooper, N.M., and Park, H.S., 2002a, Glycosyl-phosphatidylinositol (GPI)-anchored renal dipeptidase is released by a phospholipase C in vivo, Kidney Blood Press Res. 25: 7–12.PubMedCrossRefGoogle Scholar
  96. Park, S.W., Yoon, H.J., Lee, H.B., Hooper, N.M., and Park, H.S., 2002b, Nitric oxide inhibits the shedding of the glycosylphosphatidylinositol-anchored dipeptidase from porcine renal proximal tubules, Biochem. J. 364: 211–218.PubMedGoogle Scholar
  97. Parpal, S., Karlsson, M., Thorn, H., and Stralfors, P., 2001, Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but notet for mitogen-activated protein kinase control, J Biol. Chem. 276: 9670–9678.PubMedCrossRefGoogle Scholar
  98. Petitfrere, E., Sartelet, H., Vivien, D., Varela-Nieto, I., Elbtaouri, H., Martiny, L., and Haye, B., 1998, Glycosyl phosphatidylinositol (GPI)/inositolphosphate glycan (IPG): an intracellular signalling system involved in the control of thyroid cell proliferation, Biochimie. J. 80:1063–1067.CrossRefGoogle Scholar
  99. Piec, G.,and Le Hir, M., 1991, The soluble “low-Km” 5’-nucleotidase of rat kidney represents solubilized ecto-5’-nucleotidase, Biochem. J 273:409–413.PubMedGoogle Scholar
  100. Pralle, A., Keller, P., Florin, E.L., Simons, K., and Hörber, J.K.H., 2000, Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells, J. Cell Biol. 148: 997–1007.PubMedCrossRefGoogle Scholar
  101. Rademacher, T.W., Edge, C.J., and Dwek, R.A., 1991, Dropping anchor with the lipophosphoglycans, Glycobiology 1: 41–42.CrossRefGoogle Scholar
  102. Reid-Taylor, K.L., Chu, J.W K., and Sharom, F.J., 1999, Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide, Biochem. Cell Biol. 77: 189–200.PubMedCrossRefGoogle Scholar
  103. Rietveld, A., and Simons, K., 1998, The differential miscibility of lipids as the basis for the formation of functional membrane rafts, Biochim. Biophys. Acta 1376: 467–479.PubMedCrossRefGoogle Scholar
  104. Roberts, J.M., Kenton, P., and Johnson, P.M., 1990, Growth factor-induced release of a glycosyl-phosphatidylinositol (GPI)-linked protein from the HEp-2 human carcinoma cell line, FEBS Lett. 267: 213–216.PubMedCrossRefGoogle Scholar
  105. Roberts, W.L., Myher, J.J., Kuksis, A., Low, M.G., and Rosenberry, T.L., 1988, Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C, J. Biol. Chem. 263: 18766–18775.PubMedGoogle Scholar
  106. Romero, G., Luttrell, L., Rogol, A., Zeller, K., Hewlett, E., and Lamer, J., 1988, Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators, Science 240:509–511.CrossRefGoogle Scholar
  107. Rosenberger, C.M., Brumell, J.H., and Finlay, B.B., 2000, Microbial pathogenesis: Lipid rafts as pathogen portals, Curr. Biol. 10: R823 – R825.PubMedCrossRefGoogle Scholar
  108. Rosenberry, T.L., 1991, A chemical modification that makes glycoinositol phospholipids resistant to phospholipase C cleavage: fatty acid acylation of inositol, Cell Biol. Int. Rep. 15: 1133–1150.PubMedCrossRefGoogle Scholar
  109. Salzer, U., and Prohaska, R., 2001, Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts, Blood 97: 1141–1143.PubMedCrossRefGoogle Scholar
  110. Santos, A.L., Abreu, C.M., Alviano, C.S., and Soares, R.M., 2002, Activation of the glycosylphosphatidylinositol-anchored membrane proteinase upon release from Herpetomonas samuelpessoai by phospholipase C, Curr. Microbiol. 45: 293–298.PubMedCrossRefGoogle Scholar
  111. Schroeder, R., London, E., and Brown, D.A., 1994, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI- anchored proteins in liposomes and cells show similar behavior, Proc. Natl. Acad. Sci. USA 91:12130–12134.PubMedCrossRefGoogle Scholar
  112. Sharom, F.J., and Lehto, M.T., 2002, GPI-anchored proteins: structure, function, and cleavage by PI-specific phospholipases, Biochem. Cell Biol. 80: 535–549.PubMedCrossRefGoogle Scholar
  113. Sharom, F.J., Lorimer, I., and Lamb, M.P., 1985, Reconstitution of lymphocyte 5’-nucleotidase in lipid bilayers: behaviour and interaction with concanavalin A, Can. J. Biochem. Cell Biol. 63: 1049–1057.PubMedCrossRefGoogle Scholar
  114. Sharom, F.J., McNeil, G.L., Glover, J.R., and Seier, S., 1996, Modulation of the cleavage of glycosylphosphatidylinositol-anchored proteins by specific bacterial phospholipases, Biochem. Cell Biol. 74: 701–713.PubMedCrossRefGoogle Scholar
  115. Sheets, E.D., Lee, G.M., Simson, R., and Jacobson, K., 1997, Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane, Biochemistry 36:12449–12458.PubMedCrossRefGoogle Scholar
  116. Shigematsu, S., Watson, R.T., Khan, A.H., and Pessin, J.E., 2003, The adipocyte plasma membrane caveolin functional/structural organization is necessary for the efficient endocytosis of GLUT4, J. Biol. Chem. 278:10683–10690.PubMedCrossRefGoogle Scholar
  117. Simons, K., and Ikonen, E., 1997, Functional rafts in cell membranes, Nature 387:569–572.PubMedCrossRefGoogle Scholar
  118. Singh, N., Liang, L.N., Tykocinski, M.L., and Tartakoff, A.M., 1996, A novel class of cell surface glycolipids of mammalian cells. Free glycosyl phosphatidylinositols, J. Biol. Chem. 271:12879–12884.PubMedCrossRefGoogle Scholar
  119. Tam, B.Y., Larouche, D., Germain, L., Hooper, N.M., and Philip, A., 2001, Characterization of a 150 kDa accessory receptor for TGF-beta 1 on keratinocytes: direct evidence for a GPI anchor and ligand binding of the released form, J. Cell Biochem. 83: 494–507.PubMedCrossRefGoogle Scholar
  120. Tsujioka, H., Misumi, Y., Takami, N., and Ikehara, Y., 1998, Posttranslational modification of glycosylphosphatidylinositol (GPI)-specific phospholipase D and its activity in cleavage of GPI anchors, Biochem. Biophys. Res. Commun. 251: 737–743.PubMedCrossRefGoogle Scholar
  121. Tsujioka, H., Takami, N., Misumi, Y., and Ikehara, Y., 1999, Intracellular cleavage of glycosylphosphatidylinositol by phospholipase D induces activation of protein kinase Calpha, Biochem. J. 342: 449–455.PubMedCrossRefGoogle Scholar
  122. Varela-Nieto, I., Leon, Y., and Caro, H.N., 1996, Cell signalling by inositol phosphoglycans from different species, Comp. Biochem. Physiol. B 115: 223–241.PubMedCrossRefGoogle Scholar
  123. Vanua, R., and Mayor, S., 1998, GPI-anchored proteins are organized in submicron domains at the cell surface, Nature 394: 798–801.CrossRefGoogle Scholar
  124. Villalba, M., Alvarez, J.F., Russell, D.S., Mato, J.M., and Rosen, O.M., 1990, Hydrolysis of glycosyl-phosphatidylinositol in response to insulin is reduced in cells bearing kinase-deficient insulin receptors, Growth Factors 2: 91–97.PubMedCrossRefGoogle Scholar
  125. Villar, A.V., Goni, F.M., Alonso, A., Jones, D.R., Leon, Y., and Varela-Nieto, I., 1998, Phospholipase cleavage of glycosylphosphatidylinositol reconstituted in liposomal membranes, FEBS Lett. 432: 150–154.PubMedCrossRefGoogle Scholar
  126. Vincent, S., Gerlier, D., and Manié, S.N., 2000, Measles virus assembly within membrane rafts, J. Virol. 74: 9911–9915.PubMedCrossRefGoogle Scholar
  127. Viola, A., 2001, The amplification of TCR signaling by dynamic membrane microdomains, Immunol. Today 22: 322–327.Google Scholar
  128. Vogel, M., Kowalewski, H., Zimmermann, H., Hooper, N.M., and Turner, A.J., 1992, Soluble low-Km 5’-nucleotidase from electricray (Torpedo marmorata) electric organ and bovine cerebral cortex is derived from the glycosyl-phosphatidylinositol-anchored ectoenzyme by phospholipase C cleavage, Biochem. J. 284: 621–624.PubMedGoogle Scholar
  129. Wang, X., Jansen, G., Fan, J., Kohler, W.J., Ross, J.F., Schornagel, J., and Ratnam, M., 1996, Variant GPI structure in relation to membrane-associated functions of a murine folate receptor, Biochemistry 35:16305–16312.PubMedCrossRefGoogle Scholar
  130. Webb, H., Carnall, N., Vanhamme, L, Rolin, S., Van Den, A.J., Welburn, S., Pays, E., and Carrington, M., 1997, The GPI-phospholipase C of Trypanosoma brucei is nonessential but influences parasitemia in mice, J. Cell Biol. 139:103–114.PubMedCrossRefGoogle Scholar
  131. Yuan, C.B., Furlong, J., Burgos, P., and Johnston, L.J., 2002, The size of lipid rafts: An atomic force microscopy study of ganglioside GMl domains in sphingomyelin/DOPC/ cholesterol membranes, Biophys. J. 82: 2526–2535.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Frances J. Sharom
    • 1
  • Galina Radeva
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of GuelphGuelphCanada

Personalised recommendations