Sphingomyelin and Cholesterol: From Membrane Biophysics and Rafts to Potential Medical Applications

  • Yechezkel Barenholz
Part of the Subcellular Biochemistry book series (SCBI, volume 37)


The preferential sphingomyelin—cholesterol interaction which results from the structure and the molecular properties of these two lipids seems to be the physicochemical basis for the formation and maintenance of cholesterol/sphingolipid-enriched nano- and micro-domains (referred to as membrane “rafts”) in the plane of plasma and other organelle (i.e., Golgi) membranes. This claim is supported by much experimental evidence and also by theoretical considerations. However, although there is a large volume of information about these rafts regarding their lipid and protein composition, their size, and their dynamics, there is still much to be clarified on these issues, as well as on how rafts are formed and maintained. It is well accepted now that the lipid phase of the rafts is the liquid ordered (LO) phase. However, other (non-raft) parts of the membrane may also be in the LO phase.

There are indications that the raft LO phase domains are more tightly packed than the non-raft LO phase, possibly due to intermolecular hydrogen bonding involving sphingolipid and cholesterol. This also explains why the former are detergent-resistant membranes (DRM), while the non-raft LO phase domains are detergent-soluble (sensitive) membranes (DSM).

Recent findings suggest that protein—protein interactions such as cross-linking can be controlled by protein distribution between raft and non-raft domains, and, as well, these interactions affect raft size distribution.

The cholesterol/sphingomyelin-enriched rafts seem to be involved in many biological processes, mediated by various receptors, as exemplified by various lipidated glycosylphosphatidylinositol (GPI)- and acyl chain-anchored proteins that reside in the rafts. The rafts serve as signaling platforms in the cell. Various pathogens (viruses and toxins) utilize the raft domains on the host cell membrane as a port of entry, site of assembly (viruses), and port of exit (viral budding). Existence and maintenance of cholesterolsphingomyelin rafts are dependent on the level of membrane cholesterol and sphingomyelin. This explains why reduction of cholesterol level — either through reverse cholesterol transport, using cholesterol acceptors such as β-cyclodextrin, or through cholesterol biosynthesis inhibition using statins — interferes with many processes which involve rafts and can be applied to treating raft-related infections and diseases.

Detailed elucidation of raft structure and function will improve understanding of biological membrane composition—structure—function relationships and also may serve as a new avenue for the development of novel treatments for major diseases, including viral infections, neurodegenerative diseases (Alzheimer’s), atherosclerosis, and tumors.


Lipid Raft Acyl Chain Biological Membrane Fluorescence Recovery After Photobleaching Sphingoid Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsson, S., Dahlen, B., Lofgren, H., Pascher, I., Sundell, S. 1977. In: Abrahamsson, S., Pascher, I., Eds. Structure of Biological Membranes. Plenum Press, New York, p. 1.CrossRefGoogle Scholar
  2. Ali, A., Avalos, R.T., Ponimaskin, E., Nayak, D.P. 2000. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol. 74: 8709–8719.PubMedCrossRefGoogle Scholar
  3. Aussenac, F., Tavares, M., Dufourc, E.J. 2003. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Biochemistry 42, 1383–1390.PubMedCrossRefGoogle Scholar
  4. Bar, L.K., Barenholz, Y., Thompson, T.E. 1986. The fraction of cholesterol undergoing spontaneous exchange between small unilamellar phosphatidylcholine vesicles. Biochemistry 25: 6701–6705.PubMedCrossRefGoogle Scholar
  5. Bar, L.K., Barenholz, Y., Thompson, T.E. 1987. Dependence of the fraction of cholesterol undergoing spontaneous exchange between small unilamellar vesicles and their phospholipid composition. Biochemistry 26: 5460–5465.PubMedCrossRefGoogle Scholar
  6. Bar, L.K., Chong, P.C., Barenholz, Y, Thompson, T.E. 1989. Spontaneous transfer between phospholipid bilayers of dehydroergosterol, a fluorescent cholesterol analog. Biochim. Biophys. Acta 983: 109–112.PubMedCrossRefGoogle Scholar
  7. Bar, L.K., Barenholz, Y, Thompson, T.E. 1997. The effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry 36: 2507–2516.PubMedCrossRefGoogle Scholar
  8. Barenholz, Y. 1984. Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships. In: Shinitzky, M., Ed. Physiology of Membrane Fluidity, Vol. I. CRC Press, Boca Raton, FL, pp. 131–172.Google Scholar
  9. Barenholz, Y. 2001. Liposome application: problems and prospects. Curr. Opin. Colloid Interface Sci. 6: 66–77.CrossRefGoogle Scholar
  10. Barenholz, Y. 2002. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog. Lipid Res. 41: 1–5.PubMedCrossRefGoogle Scholar
  11. Barenholz, Y, Cevc, G. 2000. Structure and properties of membranes. In: Baszkin, A., Norde, W, Eds. Physical Chemistry of Biological Surfaces. Marcel Dekker, New York, pp. 171–241.Google Scholar
  12. Barenholz, Y, Gatt, S. 1982. Sphingomyelin: metabolism, chemical synthesis, chemical and physical properties. In: Hawthorne, J.N., Ansell, G.B., Eds. Phospholipids. Comprehensive Biochemistry. Elsevier, New York, pp. 129–177.Google Scholar
  13. Barenholz, Y, Greenfeld, Z. 1997. Method of improving renal function. U.S. Patent 5,622,715 (April 22 ).Google Scholar
  14. Barenholz, Y, Shmeeda, H. 2003. Involvement of membrane and lipoprotein lipid in aging processes. In: Rosin, A., Ed. Aging and Gerontology in Israel. JDC-Eshel, Jerusalem, pp. 173–200.Google Scholar
  15. Barenholz, Y, Thompson, T.E. 1980. Sphingomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 604: 129–158.PubMedGoogle Scholar
  16. Barenholz, Y., Thompson, T.E. 1999. Sphingomyelin: biophysical aspects. Chem. Phys. Lipids 102: 29–34.PubMedCrossRefGoogle Scholar
  17. Barenholz, Y., Yechiel, E. 1989. Lipid replacement therapy. U.S. Patent 4,812,314, March 14.Google Scholar
  18. Barenholz, Y, Suurkuusk, J., Mountcastle, D., Thompson, T.E., Biltonen, R.L. 1976. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry 15: 2441–2447.PubMedCrossRefGoogle Scholar
  19. Barenholz, Y, Yechiel, E., Cohen, R., Deckelbaum, R.J. 1981. Importance of cholesterolphospholipid interaction in determining dynamics of normal and abetalipoproteinemia red blood cell membrane. Cell Biophys. 3: 115–126.PubMedGoogle Scholar
  20. Bavari, S., Bosio, C.M., Wiegand, E., Ruthel, G., Will, A.B. et al. 2002. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 195: 593–602.PubMedCrossRefGoogle Scholar
  21. Ben-Yashar, V., Barenholz, Y 1989. The interaction of cholesterol and cholest-4-en-3-one with dipalmitoylphosphatidylcholine: comparison based on the use of three fluorophores. Biochim. Biophys. Acta 985: 271–278.PubMedCrossRefGoogle Scholar
  22. Bittman, R. 1997. Has nature designed the cholesterol side chain for optimal interaction with phospholipids? Subcell. Biochem. 28: 145–171.Google Scholar
  23. Boggs, J.M. 1987. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim. Biophys. Acta 906: 353–404.PubMedCrossRefGoogle Scholar
  24. Borchelt, D.R., Scott, M., Taraboulos, A., Stahl, N., Prusiner, S.B. 1990. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J. Cell Biol. 110: 743–752.PubMedCrossRefGoogle Scholar
  25. Brady, R.O. 2003. Enzyme replacement therapy: conception, chaos and culmination. Philos. Trans. R. Soc. London B. Biol. Sci. 358: 915–919.PubMedCrossRefGoogle Scholar
  26. Brown, D.A., London, E. 2000. Structure and function of sphingolipid-and cholesterol-rich rafts. J. Biol. Chem. 275: 17221–17224.PubMedCrossRefGoogle Scholar
  27. Brown, D.A., Rose, J.K. 1992. Sorting of GPI-anchored proteins to glycolipids-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.PubMedCrossRefGoogle Scholar
  28. Burns, M., Duff, K. 2002. Cholesterol in Alzheimer’s disease and tauopathy. Ann. N.Y. Mad. Sci. 977: 367–675.CrossRefGoogle Scholar
  29. Carey, M.C., Donovan, J.M., Eckhardt, E.R.M., Wang, D.Q-H. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 122: 948–956.PubMedCrossRefGoogle Scholar
  30. Cohen, R., Barenholz, Y., Gatt, S., Dagan, A. 1984. Preparation and characterization of well defined D-erythro sphingomyelins. Chem. Phys. Lipids 35: 371–384.PubMedCrossRefGoogle Scholar
  31. Cooper, R.A., Strauss, J.F. 1984. In: Shinitizky, M., Ed. Physiology of Membrane Fluidity, Vol. I. CRC Press, Boca Raton, FL, pp. 73–97.Google Scholar
  32. Gier, J., Manderslot, J.G., van Deenen, L.L.M. 1969. The role of cholesterol in lipid membranes. Biochim. Biophys. Acta 173: 143–152.PubMedCrossRefGoogle Scholar
  33. Kruijff, B., Cullis, P.R., Verkeleij, A.J., Hope, M.J., Van Echteld, C.J.A., Taraschi, T.F. 1985. In: Marnetosi, A.N., Ed. The Enzymes of Biological Membranes, 2nd ed., Vol. I. Plenum Press, New York, pp. 131–204.CrossRefGoogle Scholar
  34. Deamer, D.W., Chakrabarti, A. 1996. In: Barenholz, Y, Lasic, D.D., Eds. Handbook of Nonmedical Applications of Liposomes, Vol. II ( Models for biological phenomena). CRC Press, Boca Raton, FL, pp. 303–313.Google Scholar
  35. Demel, R.A., Bruckdorfer, K.R., van Deenen, L.L.M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta 255: 321–330.PubMedCrossRefGoogle Scholar
  36. Demel, R.A., Jansen, J.W.C.M., Van Dijck, P.W.M., Van Deenen, L.L.M. 1977. The preferential interaction of cholesterol with different classes of phospholipids. Biochim. Biophys. Acta 465: 1–10.PubMedCrossRefGoogle Scholar
  37. Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K., Grafton, E. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80: 1417–1428.PubMedCrossRefGoogle Scholar
  38. Dobrowsky R.T. 2000. Sphingolipid signaling domains floating on rafts or buried in caves? Cell. Signal. 12: 81–90.CrossRefGoogle Scholar
  39. Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R., He, H.T. 2002. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21: 1899–1908.PubMedCrossRefGoogle Scholar
  40. Dufourc, E.J., Parish, E.J., Chitrakorn, S., Smith, I.C.P. 1984. Structural and dynamical details of cholesterol lipid interaction as revealed by deuterium NMR. Biochemistry 23: 6062–6071.CrossRefGoogle Scholar
  41. Dufour, E, Zhao, W, Ravindranath, L., Alkon, D. 2003. Abnormal cholesterol processing in Alzheimer’s disease patient’s fibroblasts. Neurobiol. Lipids Vol. 1, article 7. Published online March 14, 2003. Available at: content/1/7/Google Scholar
  42. Edidin, M. 2003. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32: 257–283.PubMedCrossRefGoogle Scholar
  43. Estep, T.N., Calhoun, W.I., Barenholz, Y., Biltonen, R.L., Shipley, G.G., Thompson, T.E. 1980. Evidence for metastability in N-stearoyl sphingomyelin in bilayer. Biochemistry 19: 20–24.PubMedCrossRefGoogle Scholar
  44. Feher, J.J. 1974. Studies of self-association and solvent-association of cholesterol and other 3 ß-hydroxysteroids in nonpolar media. J. Phys. Chem. 78: 250–255.CrossRefGoogle Scholar
  45. Ferguson-Yankey, S.R., Borchman, D., Taylor, K.G., Du Pre, A.B., Yappert, M.C. 2000. Conformational studies of sphingolipid by NMR spectroscopy. I. Dihydrosphingomyelin. Biochim. Biophys. Acta 1467: 307–325.CrossRefGoogle Scholar
  46. Fielding, C.J., Fielding, P.E. 2000. Cholesterol and caveolae: structural and functional relationships. Biochim. Biophys. Acta 1529: 210–222.PubMedCrossRefGoogle Scholar
  47. Frank, A., Barenholz, Y., Lichtenberg, D., Thompson, T.E. 1983. Spontaneous transfer of sphingomyelin between phospholipid bilayers. Biochemistry 22: 5647–5651.CrossRefGoogle Scholar
  48. Freed, E.O. 2002. Rafting with Ebola. Science 296: 279.PubMedCrossRefGoogle Scholar
  49. Friedman, M., Byers, S.O., Rosenman, R.H. 1957. Resolution of aortic atherosclerotic infil-Google Scholar
  50. tration in the rabbit by phosphatide infusion. Proc. Soc. Exp. Biol. Med. 95:586–588. Futerman, A.H. 1995. Inhibition of sphingolipid synthesis - effects on glycosphingolipid-Google Scholar
  51. GPI-anchored protein microdomains. Trends Cell Biol. 5:377–380.Google Scholar
  52. Garver, W.S., Heidenreich, R.A. 2002. The Niemann-Pick C proteins and trafficking of cholesterol through the endosomal/lysosomal system. Curr. Mol. Med. 2: 485–505.PubMedCrossRefGoogle Scholar
  53. Gatt, S., Barenholz, Y. 1999. Editors of “Sphingomyelin: Chemistry, Biophysics, Metabolism, Genetics and Signaling”, Chem. Phys. Lipids 102: issues 1 and 2.Google Scholar
  54. Gilbert, D.B., Reynolds, J.A. 1976. Thermodynamic equilibria of cholesterol-detergent-water. Biochemistry 15: 71–74.PubMedCrossRefGoogle Scholar
  55. Gousset, K., Crowe, J.H., Field, C.L., Oliver, A.E., Tablin, E, Tsvetkova, N.M., Walker, N.J., Wolkers, W.F. 2002. Evidence for a physiological role for membrane rafts in human platelets. J. Cell. Physiol. 190: 117–128.PubMedCrossRefGoogle Scholar
  56. Grant, G.J., Barenholz, Y, Piskoun, B., Bansinath, M., Turndorf, H., Bolotin, E. 2001. DRV liposomal bupivacaine: preparation, characterization and in vivo evaluation in mice. Pharm. Res. 18: 336–343.PubMedCrossRefGoogle Scholar
  57. Grunze, M., Deuticke, B. 1974. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochim. Biophys. Acta 356: 125–136.PubMedCrossRefGoogle Scholar
  58. Haines, T.H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 299–324.Google Scholar
  59. Haldar, K., Hanson, T., Hiller, N.L., Lauer, S., McManus, H., Mohandas, N., Samuel, B.U., VanWye, J. 2000. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO 19: 3556–3564.CrossRefGoogle Scholar
  60. Haran, G., Cohen, R., Bar, L.K., Barenholz, Y. 1993. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1151: 201–215.PubMedCrossRefGoogle Scholar
  61. Hauser, H., Pascher, I., Pearson, R.H., Sundell, S. 1981. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim. Biophys. Acta 650: 25–51.Google Scholar
  62. Helms, J.B., Bruegger, B., Gkantiragas, I., Kaloyanova, D., Li, X.-Y., Loehr, K., Lottspeich, E, Stueven, E., Wieland, F.T. 2001. Sphingomyelin-enriched microdomains at the Golgi complex. Mol. Biol. Cell 12: 1819–1833.PubMedGoogle Scholar
  63. Hertz, R., Barenholz, Y. 1975. Permeability and integrity properties of lecithinsphingomyelin liposomes. Chem. Phys. Lipids 15: 138–156.PubMedCrossRefGoogle Scholar
  64. Hertz, R., Barenholz, Y. 1977. The relations between the composition of liposomes and their interaction with Triton X-100. J. Colloid Interface Sci. 60: 188–200.CrossRefGoogle Scholar
  65. Hildreth, J.E. 2001. Beta-cyclodextrin compositions and use to prevent transmission of sexually transmitted diseases. U.S. Pat. Appl. 801393/09, July 3.Google Scholar
  66. Huang, C. 1977. A structural model for the cholesterol-phosphatidyl choline complexes in bilayer membranes. Lipids 12: 348–358.PubMedCrossRefGoogle Scholar
  67. Huang, C., Mason, J.T. 1986. Structure and properties of mixed-chain phospholipid assemblies. Biochim. Biophys. Acta 864: 423–470.PubMedCrossRefGoogle Scholar
  68. Ipsen, J.H., Karlstrom, G., Mouritsen, O.G., Wennerstrom, H., Zuckerman, M.J. 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905: 162–172.PubMedCrossRefGoogle Scholar
  69. Ipsen, J.H., Mouritsen, O.G., Bloom, M. 1990. Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain order. The effects of cholesterol. Biophys. J. 57: 405–412.PubMedCrossRefGoogle Scholar
  70. Israelachvili, J.N. 1992. Intermolecular and Surface Forces. 2nd ed. Academic Press, London, pp. 366–399.Google Scholar
  71. Israelachvili, J.N., Marcelja, S., Horn, R.G. 1980. Physical principles of membrane organization. Q. Rev. Biophys. 13: 121–200.PubMedCrossRefGoogle Scholar
  72. Jain, M.K., White, H.B. 3rd. 1977. Long-range order in biomembranes. Adv. Lipid Res. 15: 1–60.PubMedGoogle Scholar
  73. Jedlovszky, P., Mezei, M. 2003. Effect of cholesterol on properties of phospholipid membrane. 1: Structural features. J. Phys. Chem. B107: 5311–5321.Google Scholar
  74. Jendrasiak, G.L., Smith, R.L. 2001. The effect of choline head group on phospholipid hydration. Chem. Phys. Lipids 113: 55–66.PubMedCrossRefGoogle Scholar
  75. Kan, C.C., Kolesnick, R. 1993. Signal transduction via the sphingomyelin pathway. Trends Glycosci. Glycotechnol. 5: 99–106.CrossRefGoogle Scholar
  76. Klausner, R.D., Kleinfeld, A.M., Hoover, R.L., Karnovsky, M.J. 1980. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255: 1286–1295.PubMedGoogle Scholar
  77. Kolesnick, R., Golde, D.W. 1994. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77: 325–328.PubMedCrossRefGoogle Scholar
  78. Koudinova, N.Y., Kontush, A., Berezov, T.T., Koudinov, A.R. 2003. Amyloid beta, neural lipids, cholesterol and Alzheimer’s disease. Neurobiol. Lipids Vol. 1, article 6. Published online March 3, 2003. Available at Google Scholar
  79. Kumar, S., Gompper, G., Lipowsky, K. 2001. Budding dynamics of multicomponent membranes. Phys. Rev. Lett. 86: 3911–3914.CrossRefGoogle Scholar
  80. Kumar, VV 1991. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc. Natl. Acad. Sci. USA 88: 444–448.PubMedCrossRefGoogle Scholar
  81. Kurzchalia, T.V., Parton, R.G. 1999. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11: 424–431.PubMedCrossRefGoogle Scholar
  82. Lentz, B.R., Hoechli, M., Barenholz, Y. 1981. Acyl chain order and lateral domain formation in mixed phosphatidylcholine-sphingomyelin multilamellar and unilamellar vesicles. Biochemistry 20: 6803–6809.PubMedCrossRefGoogle Scholar
  83. Levin, LW., Thompson, T.E., Barenholz, Y., Huang, C. 1985. Two types of hydrocarbon chain. Interdigitation in sphingomyelin bilayers. Biochemistry 24: 6282–6286.PubMedCrossRefGoogle Scholar
  84. Liao, Z., Graham, D.R., Hildreth, J.E.K. 2003. Lipid rafts and HIV pathogenesis: viron-associated cholesterol is required for fusion and infection of susceptible cells. Aids Res. Hum. Retroviruses 19: 675–687.CrossRefGoogle Scholar
  85. Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H., Hildreth, J.E.K. 2001. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type I. Aids Res. Hum. Retroviruses 17: 1009–1019.CrossRefGoogle Scholar
  86. Lichtenberg, D., Barenholz, Y. 1988. Liposomes: Preparation, characterization and preservation. In: Glick, D., Ed. Methods of Biochemical Analysis. Wiley, New York, Vol. 33, pp. 337–462.Google Scholar
  87. Lindwasser, O.W. and Resh, M.D. 2001. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75: 7913–7924.PubMedCrossRefGoogle Scholar
  88. Lipowsky, R. 2002. Domains and rafts in membranes–hidden dimensions of self-organization. J. Biol. Phys. 28: 195–210.PubMedCrossRefGoogle Scholar
  89. Lofgren, H., Pascher, I. 1977. Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem. Phys. Lipids 20: 273–284.PubMedCrossRefGoogle Scholar
  90. London E, Brown, D.A. 2000. Insolubility of lipids in Triton X-100: physical origin and relationship in sphingolipid/cholesterol membranes domains (rafts). Biochim. Biophys. Acta 1508: 182–195.PubMedCrossRefGoogle Scholar
  91. Lu, P.S., Diaz-Sarmineto, C.S., Seed, B.A., Xavier, R., Irving, B. 2002. PDZ domain interactions and lipid rafts. U.S. Pat. Appl. 080273/10, Feb. 19.Google Scholar
  92. Marsh, D. 1990. CRC Handbook Of Lipid Bilayers. CRC Press, Boca Raton, FL.Google Scholar
  93. Merrill, A.H. Jr., Schmelz, E.M., Wang, E., Schroeder, J.J., Dillehay, D.L. 1995. Role of dietary sphingolipids and inhibitors of sphingolipid metabolism in cancer and other diseases. J. Nutr. 125:1677S–1682S.Google Scholar
  94. Merrill, A.H. Jr., Schmelz, E.M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A., Wang. E. 1997. Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142: 208–225.Google Scholar
  95. Migata, H. 2001. Microstructure in cell membranes and their roles in cellular activities. Membrane 26: 134–140.CrossRefGoogle Scholar
  96. Milhiet, P.E., Giocondi, M-C., Le Grimellec, C. 2002. Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models. J. Biol. Chem. 277: 875–878.PubMedCrossRefGoogle Scholar
  97. Mitchell, D.C., Litman, B.J. 1998. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys. J. 75: 896–908.PubMedCrossRefGoogle Scholar
  98. Mitchell, D.C., Litman, B.J. 2001. Modulation of receptor signaling by phospholipid acyl chain composition, In: Mostofsky, D.I., Yehuda, S., Salem, N., Eds. Fatty acids: From Neuronal Membrane to Physiological and Behavioral Functions, Part I, Chapter 2. Humana Press.Google Scholar
  99. Mouritsen, O.G., Jorgensen, K. 1995. Micro, nano and meso-scale heterogeneity of lipid bilayers and its influence on macrospopic membrane properties. Mol. Membr. Biol. 12: 15–20.PubMedCrossRefGoogle Scholar
  100. Mouritsen, O.G., Jorgensen, K. 1994. Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 73: 3–25.PubMedCrossRefGoogle Scholar
  101. Mouritsen, O.G., Jorgensen, K. 1998. A new look at lipid-membrane structure in relation to drug research. Pharm. Res. 15: 1507–1519.PubMedCrossRefGoogle Scholar
  102. Mouritsen, O.G., Jorgensen, K., Trandum, C., Werth, P. 1999. Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and gangliosides. A titration calorimetry study. Biochim. Biophys. Acta 1420: 179–188.PubMedCrossRefGoogle Scholar
  103. Mueller, W.E., Eckert, G.P., Igbavoboa, U., Wood, W.G. 2001. Characterization of lipid rafts isolated from purified brain membranes of C57BL/6J mice. Soc. Neurosci. Abstracts 27.Google Scholar
  104. Naslaysky, N., Shmeeda, H., Friedlander, G., Yanai, A., Futerman, A.H., Barenholz, Y., Taraboulos, A. 1999. Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J. Biol. Chem. 274: 20763–20771.CrossRefGoogle Scholar
  105. Nes, W.R. 1974. Role of sterols in membranes. Lipids 9: 596–612.PubMedCrossRefGoogle Scholar
  106. Nguyen, D.H., Hildreth, J.F. 2000. Evidence for budding of human immunodeficiency virus type 1 from glycolipid-enriched membrane rafts. J. Virol. 74: 3264–3272.PubMedCrossRefGoogle Scholar
  107. Nielsen, M., Miao, L., Ipsen, J.H., Zuckerman, M, Mouristen, O. 1999. Off lattice model for phase behavior of lipid cholesterol bilayers. Phys. Rev. 59: 5790–5803.Google Scholar
  108. Niu, S., Litman, B.J. 2002. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys. J. 83: 3408–3415.PubMedCrossRefGoogle Scholar
  109. Nyberg, L., Duan, R., Nilsson, A. 2000. A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. J. Nutr. Biochem. 11: 244–249.PubMedCrossRefGoogle Scholar
  110. Obeid, L.M., Hannun, Y.A. 1995. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J. Cell Biochem. 58: 191–198.PubMedCrossRefGoogle Scholar
  111. Oborina, E.M., Yapert, M.C. 2003. Effect of sphingomyelin versus dipalmitoyl phosphatidyl choline on extent of lipid oxidation. Chem. Phys. Lipids 123: 223–232.PubMedCrossRefGoogle Scholar
  112. Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., Slotte, J.P. 2002. Cholesterol interaction with phospholipids in membranes. Prog. Lipid Res. 41: 66–97.PubMedCrossRefGoogle Scholar
  113. Ono, A., Freed, E.O. 2001. Plasma membrane rafts play a critical role in HIV-assembly and release. Proc. Natl. Acad. Sci. USA 98: 13925–13930.PubMedCrossRefGoogle Scholar
  114. Pal, R., Barenholz, Y, Wagner, R.R. 1981. Depletion and exchange of cholesterol from the membrane of vesicular stomatitis virus by interaction with serum lipoproteins or poly(vinylpyrrolidone) complexed with bovine serum albumin Biochemistry 20: 530–539.Google Scholar
  115. Paphadjopoulos, D., Lowden, M., Kimelberg, H. 1973. Role of cholesterol in membranes: effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim. Biophys. Acta 330: 8–26.CrossRefGoogle Scholar
  116. Parasassi, T., Distfano, M., Loiero, M., Ravagnan, G., Gratton, E. 1994. Biophys. J. 66: 1895–1902.CrossRefGoogle Scholar
  117. Parkin, E.T., Hooper, N.M., Turner, A.J. 2001. Differential effects of glycosphingolipids on the detergent insolubility of the glycosylphosphatidyl-inositol-anchored membrane dipeptidase. Biochem. J. 358: 209–216.PubMedCrossRefGoogle Scholar
  118. Pascher, I. 1976. Molecular arrangements in sphingolipids conformation on membrane stability and permeability. Biochim. Biophys. Acta 455: 433–451.PubMedCrossRefGoogle Scholar
  119. Patra, S.K., Alonso, A., Arrondo, J.L.R., Gm’ i, F.M. 1999. Liposomes containing sphingomyelin and cholesterol. detergent solubilization and infrared spectroscopic studies. J. Liposome Res. 9: 247–260.CrossRefGoogle Scholar
  120. Patton, S. 1970. Correlative relationship of cholesterol and sphingomyelin cell membrane. J. Theor. Biol. 29: 489–491.PubMedCrossRefGoogle Scholar
  121. Patzer, E.J., Wagner, R.R., Barenholz, Y. 1978a. Cholesterol oxidase as a probe for studying membrane organization. Nature 274: 394–395.PubMedCrossRefGoogle Scholar
  122. Patzer, E.J., Moore, N.F., Barenholz, Y., Shaw, J.M., Wagner, RR. 1978b. Lipid organization of the membrane of vesicular Stomatitis virus. J. Biol. Chem. 253: 4544–4550.PubMedGoogle Scholar
  123. Pearson, R.H., Pascher, R.H. 1979. The molecular structure of lecithin dihydrate. Nature 281: 499–501.PubMedCrossRefGoogle Scholar
  124. Pinheiro, T.J., Sanghera, N. 2002. Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315: 1241–1256.PubMedCrossRefGoogle Scholar
  125. Presti, F.T., Pace, R.J., Chan, S.I. 1982. Cholesterol-phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains. Biochemistry 21: 3831–3835.PubMedCrossRefGoogle Scholar
  126. Riboni, R.H., Riboni, L., Viani, P., Rosseria, B., Rinetti, A., Tettamenti, G. 1997. The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 36: 153–195.PubMedCrossRefGoogle Scholar
  127. Ridgeway, N.D. 2000. Interaction between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484: 129–141.CrossRefGoogle Scholar
  128. Rinia, H.A., Snel, M.M., van der Eerden, J.P., de Kruijff, B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501: 92–96.PubMedCrossRefGoogle Scholar
  129. Rubenstein, J.L.R., Smith, B.A., McConnell, H.M. 1979. Lateral diffusion in binary mix- tures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. USA 76: 15–18.PubMedCrossRefGoogle Scholar
  130. Sackman, E. 1994. Membrane bending energy concept of vesicle-and shape-transitions. FEBS Lett. 346: 3–16.CrossRefGoogle Scholar
  131. Samuel, B., McManus, H., Hiller, L., Harrison, T., Halder, K., Lanes, S., Mohandas, M., Van Wye, J. 2001. Red cell microdomain lipids play a critical role in malarial parasite invasion and intracellular development. Blood 96: 5919.Google Scholar
  132. Samuni, A., Lipman, A., Barenholz, Y. 2000. Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration. Chem. Phys. Lipids 105: 121–134.PubMedCrossRefGoogle Scholar
  133. Saura, J., Miranda, S.R.P., Schuchman, E.H., Hawkes, R. 2001. Patterned cerebellar Purkinije cell death in transgenic mouse model of Niemann-Pick type AB disease. Eur. J. Neurosci. 13: 1873–1880.CrossRefGoogle Scholar
  134. Schmidt, C.F., Barenholz, Y., Huang, C., Thompson, T.E. 1978. Monolayer coupling in sphingomyelin bilayer systems. Nature 271: 775–777.PubMedCrossRefGoogle Scholar
  135. Schroeder, R., London, E., Brown, D. 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 91: 12130–12134.PubMedCrossRefGoogle Scholar
  136. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100: 5795–5800.PubMedCrossRefGoogle Scholar
  137. Shinitzky, M. 1984. In: Shinitzky, M., Ed. Physiology of Membrane Fluidity, Vol. I. CRC Press, Boca Raton, FL, pp. 1–51.Google Scholar
  138. Shinitzky, M., Barenholz, Y. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249: 2652–2657.PubMedGoogle Scholar
  139. Shinitzky, M., Barenholz, Y. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515: 367–394.PubMedCrossRefGoogle Scholar
  140. Shmeeda, H.R., Golden, E.B., Barenholz, Y. 1994a. In: Shinitzky, M., Ed. Handbook of Biomembranes: Structural and Functional Aspects. VCH, Weinheim, Balaban Publ., pp. 1–82.Google Scholar
  141. Shmeeda, H., Petkova, D., Barenholz, Y. 1994b. Cholesterol homeostasis in cultures of rat heart myocytes: relationship to cellular hypertrophy. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1689 - H1697.PubMedGoogle Scholar
  142. Shmeeda, H., Petkova, D., Barenholz, Y. 1995. Cholesterol distribution in rat-heart myocytes. Am. J. Physiol. 268 (Heart Circ. Physiol.): H759 - H766.PubMedGoogle Scholar
  143. Simberg, D., Weisman, S., Taimon, Y., Faerman, A., Shoshani, T., Barenholz, Y. 2003. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J. Biol. Chem. 278: 39858–39865.PubMedCrossRefGoogle Scholar
  144. Simons, K., Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:564–572. Simons, K., van Meer, G. 1988. Lipid sorting in epithelial cells. Biochemistry 27:6197–6202. Simons, K., Toomre, J. 2000. Lipid raft and signal transduction. Nat. Rev. Mol. Cell Biol. 1: 31–39.Google Scholar
  145. Slotte, J.P. 1999. Sphingomyelin-cholesterol interaction in biological and model membranes. Chem. Phys. Lipids 102: 13–27.PubMedCrossRefGoogle Scholar
  146. Small, D.M. 1970. Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions. Fed. Proc. 29: 1320–1326.PubMedGoogle Scholar
  147. Small, D.M. 1986. The Physical Chemistry of Lipids: Handbook of Lipid Research Vol. 4, Plenum Press, New York.Google Scholar
  148. Snyder, B., Freire, E. 1980. Compositional domain structure in phosphatidylcholine-cholesterol and sphingomyelin-bilayers. Proc. Natl. Acad. Sci. USA 77: 4055–4059.PubMedCrossRefGoogle Scholar
  149. Sot, J., Collado, M.I., Arrondo, J.L.R., Alonso, A., Goíïi, F.M. 2002. Triton X-100-resistant bilayers: effect of lipid composition and relevance to the raft phenomenon. Langmuir 18: 2828–2835.CrossRefGoogle Scholar
  150. Straume, M., Litman, B.J. 1987. Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 26: 5121–5126.PubMedCrossRefGoogle Scholar
  151. Sundaralingam, M. 1972. Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. NY Acad. Sci. 195: 324–355.PubMedCrossRefGoogle Scholar
  152. Talbott, C.M., Vorobyov, I., Borchman, D., Taylor, K.G., Du Pre, D.B., Yappert, M.C. 2000. Conformational studies of sphingolipids by NMR spectroscopy. II: Sphingomyelin. Biochim. Biophys. Acta 1467: 326–337.Google Scholar
  153. Tanford, C. 1980. The Hydrophobic Effect. John Wiley and Sons, New York.Google Scholar
  154. Tangirala, R., Jerome, W.G., Jones, N.L., Small, D.M., Johnson, W.J., Glick, J.M., Mahlberg, F.H., Rothblat, G.H. 1994. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J. Lipid Res. 35: 93–104.PubMedGoogle Scholar
  155. Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S.B., Avraham, D. 1995. Cholesterol depletion and modification of COOH-terminal targeting sequences of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129:121–132, Erratum in J. Cell Biol. 130: 501.Google Scholar
  156. Thompson, T.E., Sankarin, M.B., Biltonen, R.L., Marsh, D., Vas, W.L.C. 1995. Effects of domain structure on in-plane reactions and interactions. Mol. Membr. Biol. 12:157–162. Thudicum, J.L.W. 1874. Researches in the chemical constitution of the brain. Rept. Med.Google Scholar
  157. Off. Privy Council New Series NO3 Ap6. Eyre and Spottiswoode, London, p. 113. Thudicum, J.L.W. 1962. A treatise on chemical constitution of the brain (reprinted, with new historical introduction by Drabkin, D.L.). Archon, Hamden, CT.Google Scholar
  158. Tirosh, O., Kohen, R., Katzhendler, J., Alon, A., Barenholz, Y. 1997. Oxidative stress effect on the integrity of lipid bilayers is modulated by cholesterol level of bilayers. Chem. Phys. Lipids 87: 17–22.PubMedCrossRefGoogle Scholar
  159. Tso, J.Y., Green, J.M. 2002. Identifying anti-tumor targets or agents by lipid raft immunization and proteomics. U.S. Pat. Appl. 269010/10, Oct. 10.Google Scholar
  160. Veiga, M.P, Arondo, J.L.R., Goni, F.M., Alonso, A., Marsh, D. 2001. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40: 2614–2622.PubMedCrossRefGoogle Scholar
  161. Vincent, S., Gerlier, D., Manie, S.N. 2000. Measles virus assembly within membrane rafts. J. Virol. 74: 9911–9915.PubMedCrossRefGoogle Scholar
  162. Vincent, I., Bu, B., Erickson, R.P. 2003. Understanding Niemann-Pick type C disease: a fat problem. Curr. Opin. Neurol. 16: 155–161.PubMedCrossRefGoogle Scholar
  163. Webb, M.S., Bally, M.B., Mayer, L.D., Miller, J.J., Gardi, P.G. 1998. Patent assignee: Inex Pharmaceuticals Corporation. Sphingosomes for enhanced drug delivery. U.S. Patent 05,814,335, Sept. 29.Google Scholar
  164. Wieland, F.T., Bruegger, B., Gorgas, K., Helms, J.B., Lehmann, W-D., Malsam, J., Nickel, W, Sandhoff, R., Wegehingel, S. 2000. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151: 507–517.PubMedCrossRefGoogle Scholar
  165. Williams, K.J. 2002. U.S. Patent 06,367, 479.Google Scholar
  166. Williams, K.J., Tall, A.R. 1988. Interactions of liposomes with lipoproteins: relevance to drug delivery systems and to the treatment of atherosclerosis. In: Gregoriadis, G., Ed. Liposomes as Drug Carriers, John Wiley and Sons Ltd., pp. 93–111.Google Scholar
  167. Williams, K.J., Werth, V.P., Wolff, J.A. 1984. Intravenously administered lecithin liposomes: a synthetic antiatherogenic lipid particle. Perspect. Biol. Med. 27: 417–431.PubMedGoogle Scholar
  168. Wolf, C., Koumanov, K., Quinn, PJ., Tenchov, B. 2001. Cholesterol favors phase separation of sphingomyelin. Biophys. J. 89: 163–172.Google Scholar
  169. Xu, X., London, E. 2000. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843–849.PubMedCrossRefGoogle Scholar
  170. Xu, X.L., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., London, E. 2001. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J. Biol. Chem. 276: 33540–33546.PubMedCrossRefGoogle Scholar
  171. Yeagle, P.L. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta 822: 267–287.PubMedCrossRefGoogle Scholar
  172. Yeagle, P.L. 1988. Cholesterol and the cell membrane. In: Yeagle, P.L., Ed. Biology of Cholesterol. CRC Press, Boca Raton, Chapter 6, pp. 121–145.Google Scholar
  173. Yeagle, P.L. 1993a. The Membrane of Cells, 2nd ed. Academic Press, San Diego, pp. 69–165.Google Scholar
  174. Yeagle, P.L. 1993b. The Membrane of Cells, 2nd ed. Academic Press, San Diego, pp. 13–17.Google Scholar
  175. Yechiel, E., Barenholz, Y. 1985. Relationships between membrane lipid composition and biological properties of rat myocytes: effects of aging and manipulation of lipid compo-sition. J. Biol. Chem. 260: 9132–9136.PubMedGoogle Scholar
  176. Yechiel, E., Henis, Y.I., Barenholz, Y 1986a. Aging of rat heart myocytes and fibroblasts: relationship between lipid composition, membrane organization and biological properties. In: Freysz, L., Dreyfus, H., Massarelli, R., Gatt, S., Eds. Enzymes of Lipid Metabolism II. Plenum Press, New York, pp. 519–533.CrossRefGoogle Scholar
  177. Yechiel, E., Henis, Y.I., Barenholz, Y. 1986b. Aging of rat heart fibroblasts: relationship between lipid composition membrane organization and biological properties. Biochim. Biophys. Acta 859: 95–104.PubMedCrossRefGoogle Scholar
  178. Yedgar, S., Barenholz, Y, Cooper, V.G. 1974. Molecular weight, shape and structure of mixed micelles of Triton X-100 and sphingomyelin. Biochim. Biophys. Acta 363: 98–111.PubMedCrossRefGoogle Scholar
  179. Zeidel, L., Hill, W.G. 2000. Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J. Biol. Chem. 275: 30176–30185.PubMedCrossRefGoogle Scholar
  180. Zhang, J., Pekosz, A., Lamb, R.A. 2000. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74: 4634–4644.PubMedCrossRefGoogle Scholar
  181. Zomber, G., Bogin, E., Barenholz, Y. 1996. Effect of i.v. injection of small unilamellar liposomes of egg phosphatidylcholine on cholesterol in plasma and erythrocytes, serum enzymes and liver function in dogs. J. Liposome Res. 6: 455–477.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Yechezkel Barenholz
    • 1
  1. 1.Laboratory of Membrane and Liposome ResearchThe Hebrew University — Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations