Skip to main content

Lipid Composition of Membrane Domains

  • Chapter
Membrane Dynamics and Domains

Part of the book series: Subcellular Biochemistry ((SCBI,volume 37))

Abstract

The isolation of subfractions of cell membranes on the basis of their solubility in non-ionic detergents has led to the discovery of lipid domain structure in membranes. Detergents used for this purpose include Triton, Brij, Lubrol and CHAPS. Different lipid constituents are known to resist solubilization by different detergents and the resulting fractions may associate with different membrane proteins. In general, the detergent-resistant membrane fractions tend to be dominated by saturated molecular species of sphingomyelin and phosphatidylcholine and invariably include significant proportions of cholesterol. The lipid composition is consistent with formation of liquid-ordered phases. The present evidence favours a model in which the lateral segregation of membrane proteins takes place on the basis of their affinity for liquid-ordered lipid domains within the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, S. N., Brown, D. A. and London, E., 1997, On the origin of sphingolipid/cholesterolrich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes, Biochemistry, 36: 10944–10953.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, T. G. and McConnell, H. M., 2002, A thermodynamic model for extended complexes of cholesterol and phospholipid, Biophys J, 83: 2039–2052.

    Article  PubMed  CAS  Google Scholar 

  • Bagnat, M., Keranen, S., Shevchenko, A. and Simons, K., 2000, Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast, Proc Natl Acad Sci USA, 97: 3254–3259.

    Article  PubMed  CAS  Google Scholar 

  • Boesze-Battaglia, K., Dispoto, J. and Kahoe, M. A., 2002, Association of a photoreceptor-specific tetraspanin protein, ROM-1, with triton X-100-resistant membrane rafts from rod outer segment disk membranes, JBiol Chem, 277: 41843–41849.

    Article  CAS  Google Scholar 

  • Braccia, A., Villani, M, Immerdal, L., Niels-Christiansen, L. L., Nystrom, B. T., Hansen, G. H. and Danielsen, E. M., 2003, Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by “superrafts”, J Biol Chem, 278: 15679–15684.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. A. and Rose, J. K., 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, 68: 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Bunnell, S. C., Diehn, M., Yaffe, M. B., Findell, P. R., Cantley, L. C. and Berg, L. J., 2000, Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade, JBiol Chem, 275: 2219–2230.

    Article  CAS  Google Scholar 

  • Daumas, E, Destainville, N., Millot, C., Lopez, A., Dean, D. and Salome, L., 2003, Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking, Biophys J, 84: 356–366.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., Thompson, N. L., Levi, M., Jacobson, K. and Grafton, E., 2001a, Lipid rafts reconstituted in model membranes, Biophys J, 80: 1417–1428.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. and Jacobson, K., 2001b, Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers, Proc NatlAcad Sci USA, 98: 10642–10647.

    Article  CAS  Google Scholar 

  • Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. and Jacobson, K., 2002, Relationship of lipid rafts to transient confinement zones detected by single particle tracking, Biophys J, 82: 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Drevot, P., Langlet, C., Guo, X. J., Bernard, A. M., Colard, O., Chauvin, J. P., Lasserre, R. and He, H. T., 2002, TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts, Embo J, 21: 1899–1908.

    Article  PubMed  CAS  Google Scholar 

  • Drobnik, W, Borsukova, H., Boucher, A., Pfeiffer, A., Liebisch, G., Schutz, G. J., Schindler, H. and Schmitz, G., 2002, Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains, Traffic, 3: 268–278.

    Article  PubMed  Google Scholar 

  • Gousset, K., Wolkers, W. E, Tsvetkova, N. M., Oliver, A. E., Field, C. L., Walker, N. J., Crowe, J. H. and Tablin, F., 2002, Evidence for a physiological role for membrane rafts in human platelets, J Cell Physiol, 190: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Janes, P. W, Ley, S. C., Magee, A. I. and Kabouridis, R S., 2000, The role of lipid rafts in T cell antigen receptor (TCR) signalling, Semin Immunol, 12: 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, E H., Gordesky, S. E. and Marinetti, G. V, 1974, Differential solubilization of proteins, phospholipids, and cholesterol of erythrocyte membranes by detergents, Biochim BiophysActa, 345: 154–161.

    Article  CAS  Google Scholar 

  • Li, X. M., Momsen, M. M., Smaby, J. M., Brockman, H. L. and Brown, R. E., 2001, Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins, Biochemistry, 40: 5954–5963.

    Article  PubMed  CAS  Google Scholar 

  • Madore, N., Smith, K. L., Graham, C. H., Jen, A., Brady, K., Hall, S. and Morris, R., 1999, Functionally different GPI proteins are organized in different domains on the neuronal surface, Embo J, 18: 6917–6926.

    Article  PubMed  CAS  Google Scholar 

  • Mairhofer, M., Steiner, M., Mosgoeller, W, Prohaska, R. and Salzer, U., 2002, Stomatin is a major lipid-raft component of platelet alpha granules, Blood, 100: 897–904.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, S., Brown, D. A. and Linder, M. E., 2000, Lipid-dependent targeting of G proteins into rafts, JBiol Chem, 275: 2191–2198.

    Article  CAS  Google Scholar 

  • Montixi, C., Langlet, C., Bernard, A. M., Thimonier, J., Dubois, C., Wurbel, M. A., Chauvin, J. R, Pierres, M. and He, H. T., 1998, Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains, Embo J, 17: 5334–5348.

    Article  PubMed  CAS  Google Scholar 

  • Parton, R. G., Molero, J. C., Floetenmeyer, M., Green, K. M. and James, D. E., 2002, Characterization of a distinct plasma membrane macrodomain in differentiated adipocytes, JBiol Chem, 277: 46769–46778.

    Article  CAS  Google Scholar 

  • Radhakrishnan, A., Anderson, T. G. and McConnell, H. M., 2000, Condensed complexes, rafts, and the chemical activity of cholesterol in membranes, Proc Natl Acad Sci USA, 97: 12422–12427.

    Article  PubMed  CAS  Google Scholar 

  • Roper, K., Corbeil, D. and Huttner, W. B., 2000, Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane, Nat Cell Biol, 2: 582–592.

    Article  PubMed  CAS  Google Scholar 

  • Rouquette-Jazdanian, A. K., Pelassy, C., Breittmayer, J. P., Cousin, J. L. and Aussel, C., 2002, Metabolic labelling of membrane microdomains/rafts in Jurkat cells indicates the presence of glycerophospholipids implicated in signal transduction by the CD3 T-cell receptor, Biochem J, 363: 645–655.

    Article  PubMed  CAS  Google Scholar 

  • Sakyo, T. and Kitagawa, T., 2002, Differential localization of glucose transporter isoforms in non-polarized mammalian cells: distribution of GLUT1 but not GLUT3 to detergent-resistant membrane domains, Biochim BiophysActa, 1567: 165–175.

    Article  CAS  Google Scholar 

  • Schroeder, R. J., Ahmed, S. N., Zhu, Y., London, E. and Brown, D. A., 1998, Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositolanchored proteins by promoting the formation of detergent-insoluble ordered membrane domains, JBiol Chem, 273: 1150–1157.

    Article  CAS  Google Scholar 

  • Schutz, G. J., Kada, G., Pastushenko, V. P. and Schindler, H., 2000, Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy, Embo J, 19: 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Slimane, T. A., Trugnan, G., Van, I. S. C. and Hoekstra, D., 2003, Raft-mediated Trafficking of Apical Resident Proteins Occurs in Both Direct and Transcytotic Pathways in Polarized Hepatic Cells: Role of Distinct Lipid Microdomains, Mol Biol Cell, 14: 611–624.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. Y., Leventis, R. and Silvius, J. R., 2001, Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes, Biochemistry, 40: 13031–13040.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. Y. and Silvius, J. R., 2000, Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers, Biophys J, 79: 1478–1489.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. Y. and Silvius, J. R., 2001, Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane, Biophys J, 81: 2762–2773.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C. and London, E., 2001, Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide, JBiol Chem, 276: 33540–33546.

    Article  CAS  Google Scholar 

  • Xu, X. and London, E., 2000, The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation, Biochemistry, 39: 843–849.

    Article  PubMed  CAS  Google Scholar 

  • Zubiaur, M., Fernandez, O., Ferrero, E., Salmeron, J., Malissen, B., Malavasi, F. and Sancho, J., 2002, CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/ protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs, JBiol Chem, 277: 13–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koumanov, K.S., Wolf, C., Quinn, P.J. (2004). Lipid Composition of Membrane Domains. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics