Rafts, Little Caves and Large Potholes: How Lipid Structure Interacts with Membrane Proteins to Create Functionally Diverse Membrane Environments

  • Roger Morris
  • Helen Cox
  • Enrico Mombelli
  • Peter J. Quinn
Part of the Subcellular Biochemistry book series (SCBI, volume 37)


This chapter reviews how diverse lipid microdomains form in the membrane and partition proteins into different functional units that regulate cell trafficking, signalling and movement. We will concentrate upon five major issues:
  1. 1.

    the diversity of lipid structure that produces diverse microenvironments into which different subsets of proteins partition;

  2. 2.

    why ordered lipid domains exclude proteins, and the conditions required for select subsets of proteins to enter these domains;

  3. 3.

    the coupling of the inner and outer leaflets within ordered microdomains;

  4. 4.

    the effect of ordered lipid domains upon membrane properties including curvature and hydrophobicity that affect membrane fission, fusion and extension of filopodia;

  5. 5.

    the biological effects of these structural constraints; in particular how the properties of these domains combine to provide a very different signalling, trafficking and membrane fusion environment to that found in disordered (fluid mosaic) membrane.

In addressing these problems, the review draws upon studies ranging from molecular dynamic modelling of lipid interactions, through physical studies of model membrane systems to structural and biological studies of whole cells, examining in the process problems inherent in visualising and purifying these microdomains. While the diversity of structure and function of ordered lipid microdomains is emphasised, some general roles emerge. In particular, the basis for having quite different, non-interacting ordered lipid domains on the same membrane is evident in the diversity of lipid structure and plays a key role in sorting signalling systems. The exclusion of ordered membrane from coated pits, and hence rapid endocytosis, is suggested to underlie the ability of highly ordered domains to establish stable secondary signalling systems required, for instance, in T cell receptor, insulin and neurotrophin signalling.


Lipid Raft Outer Leaflet Membrane Raft Saturated Lipid Lipid Microdomains 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrami, L., Fivaz, M., Kobayashi, T., Kinoshita, T., Parton, R.G. and van der Goot, F.G., 2001, Cross-talk between caveolae and glycosylphosphatidylinositol-rich domains. JBiol Chem, 276: 30729–36.CrossRefGoogle Scholar
  2. Adam, L., Bouvier, M. and Jones, T.L., 1999, Nitric oxide modulates (32-adrenergic receptor palmitoylation and signaling. JBiol Chem, 274: 26337–43.CrossRefGoogle Scholar
  3. Ahmed, S.N., Brown, D.A. and London, E., 1997, On the origin of sphingolipid/cholesterolrich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry, 36: 10944–53.PubMedCrossRefGoogle Scholar
  4. Aloia, R.C., Jensen, F.C., Curtain, C.C., Mobley, P.W. and Gordon, L.M., 1988, Lipid composition and fluidity of the human immunodeficiency virus. Proc Natl Acad Sci USA, 85: 900–904.PubMedCrossRefGoogle Scholar
  5. Aloia, R.C., Tian, H. and Jensen, F.C., 1993, Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA, 90: 5181–85.PubMedCrossRefGoogle Scholar
  6. Bagatolli, L.A. and Gratton, E., 2000a, A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophys J, 79: 434–447.PubMedCrossRefGoogle Scholar
  7. Bagatolli, L.A. and Gratton, E., 2000b, Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Biophys J, 78: 290–305.PubMedCrossRefGoogle Scholar
  8. Bagnat, M., Keranen, S., Shevchenko, A. and Simons, K., 2000, Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA, 97: 3254–59.PubMedCrossRefGoogle Scholar
  9. Barboni, E., Gormley, A.M., Pliego Rivero, F.B., Vidal, M. and Morris, R.J., 1991, Activation of T lymphocytes by cross-linking of glycophospholipid-anchored Thy-1 mobilizes separate pools of intracellular second messengers to those induced by the antigen-receptor/CD3 complex. Immunology, 72: 457–463.PubMedGoogle Scholar
  10. Barclay, A.N., Birkeland, M.L., Brown, M.H., Beyers, A.D., Davis, S.J., Somoza, C. and Williams, A.F., 1993, The Leucocyte Antigen FactsBook. Academic Press, London.Google Scholar
  11. Barenholz, Y. and Thompson, T.E., 1980, Sphingomyelins in bilayers and biological membranes. Biochim BiophysActa, 604: 129–158.Google Scholar
  12. Baumann, C.A., Ribon, V, Kanzaki, M., Thurmond, D.C., Mom, S., Shigematsu, S., Bickel, RE., Pessin, J.E. and Saltiel, A.R., 2000, CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature, 407: 202–207.PubMedCrossRefGoogle Scholar
  13. Becher, A., White, J.H. and Mcllhinney, R.A., 2001, The -y-aminobutyric acid receptor B, but not the metabotropic glutamate receptor type-1, associates with lipid rafts in the rat cerebellum. JNeurochem, 79: 787–795.CrossRefGoogle Scholar
  14. Benting, J., Rietveld, A., Ansorge, I. and Simons, K., 1999, Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro. FEBS Lett, 462: 47–50.PubMedCrossRefGoogle Scholar
  15. Berridge, M.J., 1987, Inositol-triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem, 56: 159–193.PubMedCrossRefGoogle Scholar
  16. Bickel, P.E., 2002, Lipid rafts and insulin signaling. Am J Physiol Endocrinol Metab, 282: E1 - E10.PubMedGoogle Scholar
  17. Bickel, P.E., Scherer, RE., Schnitzer, J.E., Oh, P., Lisanti, M.P. and Lodish, H.E, 1997, Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins. JBiol Chem, 272: 13793–802.CrossRefGoogle Scholar
  18. Bielawska, A., Greenberg, M.S., Perry, D., Jayadev, S., Shayman, J.A., McKay, C. and Ha/limn, Y.A., 1996, 1(S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. JBiol Chem,271: 12646–54.Google Scholar
  19. Bittman, R., Kasireddy, C.R., Mattjus, P. and Slotte, J.P, 1994, Interaction of cholesterol with sphingomyelin in monolayers and vesicles. Biochemistry, 33: 11776–81.PubMedCrossRefGoogle Scholar
  20. Boggs, J.M., 1987, Lipid intermolecular hydrogen bonding• influence on structural organization and membrane function. Biochim Biophys Acta, 906: 353–404.PubMedCrossRefGoogle Scholar
  21. Brdicka, T., Cerny, J. and Horejsi, V, 1998, T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant membrane microdomains. Biochem Biophys Res Commun, 248: 356–360.PubMedCrossRefGoogle Scholar
  22. Brdicka, T., Pavlistova, D., Leo, A., Bruyns, E., Korinek, V, Angelisova, P., Scherer, J., Shevchenko, A., Hilgert, I., Cerny, J., Drbal, K., Kuramitsu, Y, Kornacker, B., Horejsi, V and Schraven, B., 2000, Phosphoprotein associated with glycosphingolipid-enriched microdomains, (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. JExp Med, 191: 1591–1604.CrossRefGoogle Scholar
  23. Bretscher, M.S. and Munro, S., 1993, Cholesterol and the Golgi apparatus. Science, 261: 1280–81.PubMedCrossRefGoogle Scholar
  24. Breuza, L., Corby, S., Arsanto, J.P., Delgrossi, M.H., Scheiffele, P. and Le Bivic, A., 2002, The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. J Cell Sci, 115: 4457–67.PubMedCrossRefGoogle Scholar
  25. Brewis, I.A., Ferguson, M.A., Mehlert, A., Turner, A.J. and Hooper, N.M., 1995, Structures of the glycosyl-phosphatidylinositol anchors of porcine and human renal membrane dipeptidase. Comprehensive structural studies on the porcine anchor and interspecies comparison of the glycan core structures. JBiol Chem, 270: 22946–56.CrossRefGoogle Scholar
  26. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. and Wakeham, D.E., 2001, Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol, 17: 517–568.PubMedCrossRefGoogle Scholar
  27. Brose, N. and Rosenmund, C., 2002, Move over protein kinase C, you’ve got company: alter native cellular effectors of diacylglycerol and phorbol esters. J Cell Sci, 115: 4399–4411.PubMedCrossRefGoogle Scholar
  28. Brown, D.A. and London, E., 1997, Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun, 240: 1–7.PubMedCrossRefGoogle Scholar
  29. Brown, D.A. and London, E., 1998, Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol, 14: 111–136.CrossRefGoogle Scholar
  30. Brown, D.A. and London, E., 2000, Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol Chem, 275: 17221–24.PubMedCrossRefGoogle Scholar
  31. Brown, D.A. and Rose, J.K., 1992, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell, 68: 533–544.PubMedCrossRefGoogle Scholar
  32. Brown, R.E., 1998, Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci, 111: 1–9.PubMedGoogle Scholar
  33. Brügger, B., Graham, C.H., Leibrecht, I., Mombelli, E., Jen, A., Wieland, ET. and Morris, R., 2004, The membrane domains occupied by GPI-anchored prion protein and Thy-1 differ in lipid composition. J Biol. Chem.,in press.Google Scholar
  34. Bruses, J.L., Chauvet, N. and Rutishauser, U., 2001, Membrane lipid rafts are necessary for the maintenance of the a7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. JNeurosci, 21: 504–512.Google Scholar
  35. Cacalano, G., Farinas, I., Wang, L.C., Hagler, K., Forgie, A., Moore, M., Armanini, M., Phillips, H., Ryan, A.M., Reichardt, L.F., Hynes, M., Davies, A. and Rosenthal, A., 1998, GFRalphal is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron, 21: 53–62.PubMedCrossRefGoogle Scholar
  36. Calderon, R.O., Attema, B. and DeVries, G.H., 1995, Lipid composition of neuronal cell bodies and neuntes from cultured dorsal root ganglia. J Neurochem, 64: 424–429.PubMedCrossRefGoogle Scholar
  37. Carozzi, A.J., Roy, S., Morrow, I.C., Pol, A., Wyse, B., Clyde-Smith, J., Prior, I.A., Nixon, S.J., Hancock, J.F. and Parton, R.G., 2002, Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3. JBiol Chem, 277: 17944–17949.CrossRefGoogle Scholar
  38. Chamberlain, L.H. and Gould, G.W., 2002, The v-and t-SNARE proteins that mediate GIut4 vesicle fusion are localised in detergent-insoluble lipid rafts present on distinct intracellular membranes. JBiol Chem, 277: 49750–54.CrossRefGoogle Scholar
  39. Charles, P., Tait, S., Faivre-Sarrailh, C., Barbin, G., Gunn-Moore, F., Denisenko-Nehrbass, N., Guennoc, A.M., Girault, J.A., Brophy, P.J. and Lubetzki, C., 2002, Neurofascin is a glial receptor for the paranodin/Caspr-contactin axonal complex at the axoglial junction. Curr Biol, 12: 217–220.PubMedCrossRefGoogle Scholar
  40. Chatterjee, S., Smith, E.R., Hanada, K., Stevens, V.L. and Mayor, S., 2001, GPI anchoring leads to sphingolipid-dependent retention of endocytosed proteins in the recycling endosomal compartment. EMBO J, 20: 1583–92.PubMedCrossRefGoogle Scholar
  41. Chen, C.A. and Manning, D.R., 2000, Regulation of galpha i palmitoylation by activation of the 5-hydroxytryptamine-lA receptor. JBiol Chem, 275: 23516–22.CrossRefGoogle Scholar
  42. Chen, H., Mendelsohn, R., Rerek, M.E. and Moore, D.J., 2001, Effect of cholesterol on miscibility and phase behavior in binary mixtures with synthetic ceramide 2 and octadecanoic acid. Infrared studies. Biochim BiophysActa, 1512: 345–356.Google Scholar
  43. Cheung, D.T., Tong, D. Perelman, N., Ertl, D. and Nimni, M.E., 1990, Mechanism of crosslinking of proteins by glutaraldehyde. IV. In vitro and in vivo stability of a crosslinked collagen matrix. Connective Tissue Res.,25: 27–34.Google Scholar
  44. Corbeil, D., Roper, K., Fargeas, C.A., Joester, A. and Huttner, W.B., 2001, Prominin a story of cholesterol, plasma membrane protrusions and human pathology. Traffic, 2: 82–91.PubMedCrossRefGoogle Scholar
  45. Cremesti, A.E., Goni, F.M. and Kolesnick, R., 2002, Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett, 531: 47–53.PubMedCrossRefGoogle Scholar
  46. Crystal, G.J., Zhou, X., Alam, S, Piotrowski, A. and Hu, G., 2001, Lack of role for nitric oxide in cholinergie modulation of myocardial contractility in vivo. Am JPhysiol Heart Circ Physiol, 281: H198–206.Google Scholar
  47. Cunningham, B.A., Midmore, L., Kucuk, O., Lis, L.J., Westerman, M.P., Bras, W, Wolfe, D.H., Quinn, P.J. and Qadri, S.B., 1995, Sterols stabilize the ripple phase structure in dihexadecylphosphatidylcholine. Biochim BiophysActa, 1233: 75–83.CrossRefGoogle Scholar
  48. Czech, M.P., 2000, Lipid rafts and insulin action. Nature, 407: 147–148.PubMedCrossRefGoogle Scholar
  49. Das, S. and Rand, R.P., 1984, Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun, 124: 491–496.PubMedCrossRefGoogle Scholar
  50. Das, S. and Rand, R.P., 1986, Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry, 25: 2882–89.PubMedCrossRefGoogle Scholar
  51. de Marco, M.C., Martin-Belmonte, E, Kremer, L., Albar, J.P., Correas, I., Vaerman, J.P., Marazuela, M., Byrne, J.A. and Alonso, M.A., 2002, MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol, 159: 37–44.PubMedCrossRefGoogle Scholar
  52. Degtyarev, M.Y., Spiegel, A.M. and Jones, T.L., 1993, Increased palmitoylation of the Gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. JBiol Chem, 268: 23769–72.Google Scholar
  53. del Marco, M.C., Kremer, L., Albar, J.P., Martinez-Menarguez, J.A., Ballesta, J., Garcia-Lopez, M.A., Marazuela, M., Puertollano, R. and Alonso, M.A., 2001, BENE, a novel raft-associated protein of the MAL proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. JBiol Chem, 276: 23009–17.CrossRefGoogle Scholar
  54. Denny, P.W., Field, M.C. and Smith, D.F., 2001, GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett, 491: 148–153.PubMedCrossRefGoogle Scholar
  55. Denny, P.W., Gokool, S., Russell, D.G., Field, M.C. and Smith, D.E, 2000, Acylation-dependent protein export in Leishmania. JBiol Chem, 275: 11017–25.CrossRefGoogle Scholar
  56. Dermine, J.F., Duclos, S., Garin, J., St-Louis, E, Rea, S., Parton, R.G. and Desjardins, M., 2001, Flotillin-l-enriched lipid raft domains accumulate on maturing phagosomes. JBiol Chem, 276: 18507–12.CrossRefGoogle Scholar
  57. Derry, D.M. and Wolfe, L.S., 1967, Gangliosides in isolated neurons and glial cells. Science, 158: 1450–52.PubMedCrossRefGoogle Scholar
  58. Dessy, C., Kelly, R.A., Balligand, J.L. and Feron, O., 2000, Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling. EMBO J, 19: 4272–80.PubMedCrossRefGoogle Scholar
  59. Dibble, A.R., Hinderliter, A.K., Sando, J.J. and Biltonen, R.L., 1996, Lipid lateral heterogeneity in phosphatidylcholine/phosphatidylserine/diacylglycerol vesicles and its influence on protein kinase C activation. Biophys J, 71: 1877–90.PubMedCrossRefGoogle Scholar
  60. Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K. and Grafton, E., 2001a, Lipid rafts reconstituted in model membranes. Biophys J, 80: 1417–28.PubMedCrossRefGoogle Scholar
  61. Dietrich, C., Volovyk, Z.N., Levi, M., Thompson, N.L. and Jacobson, K., 200lb, Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc NatlAcad Sci USA,98: 10642–47.Google Scholar
  62. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. and Jacobson, K., 2002, Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J, 82: 274–284.PubMedCrossRefGoogle Scholar
  63. Dobrowsky, R.T., 2000, Sphingolipid signalling domains floating on rafts or buried in caves? Cell Signal, 12: 81–90.PubMedCrossRefGoogle Scholar
  64. Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, E, Luft, F.C., Schedl, A., Haller, H. and Kurzchalia, T.V., 2001, Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293: 2449–52.PubMedCrossRefGoogle Scholar
  65. Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R. and He, H.T., 2002, TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J., 21: 1899–1908.PubMedCrossRefGoogle Scholar
  66. Dupré, L., Aiuti, A., Trifari, S., Martino, S., Saracco, P., Bordignon, C. and Roncarolo, M.-G., 2002, Wiskott-Aldrich syndrome protein regulates lipdi raft dynamics during immunological synapse formation. Immunity, 17: 157–166.PubMedCrossRefGoogle Scholar
  67. Eason, M.G., Jacinto, M.T., Theiss, C.T. and Liggett, S.B., 1994, The palmitoylated cysteine of the cytoplasmic tail of alpha 2A-adrenergic receptors confers subtype-specific agonistpromoted downregulation. Proc NatlAcad Sci USA, 91: 11178–11182.CrossRefGoogle Scholar
  68. Edmonds, S.D. and Ostergaard, H.L., 2002, Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. Jlmmunol,169: 5036–42.Google Scholar
  69. Bawab, S., Mao, C., Obeid, L.M. and Hannun, Y.A., 2002, Ceramidases in the regulation of ceramide levels and function. Subcell Biochem, 36: 187–205.PubMedCrossRefGoogle Scholar
  70. El-Husseini, A.E., Craven, S.E., Chetkovich, D.M., Firestein, B.L., Schnell, E., Aoki, C. and Bredt, D.S., 2000, Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol, 148: 159–172.PubMedCrossRefGoogle Scholar
  71. El-Husseini A. E, D., Schnell, E., Dakoji, S., Sweeney, N., Zhou, Q., Prange, O., Gauthier-Campbell, C., Aguilera-Moreno, A., Nicoll, R.A. and Bredt, D.S., 2002, Synaptic strength regulated by palmitate cycling on PSD-95. Cell, 108: 849–863.Google Scholar
  72. Endress, E., Heller, H., Casalta, H., Brown, M.F. and Bayerl, T.M., 2002, Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochemistry, 41: 13078–86.PubMedCrossRefGoogle Scholar
  73. Estep, T.N. and Thompson, T.E., 1979, Energy transfer in lipid bilayers. Biophys. J, 26: 195–208.PubMedCrossRefGoogle Scholar
  74. Faivre-Sarrailh, C., Gauthier, E, Denisenko-Nehrbass, N.,Le Bivic, A., Rougon, G. and Girault, J.A., 2000, The glycosylphosphatidyl inositol-anchored adhesion molecule F3/contactin is required for surface transport of paranodin/contactin-associated protein, caspr,. J Cell Biol,149: 491–502.Google Scholar
  75. Farge, E. and Devaux, P.F., 1992, Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J, 61: 347–357.PubMedCrossRefGoogle Scholar
  76. Farge, E., Ojcius, D.M., Subtil, A. and Dautry-Varsat, A., 1999, Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am JPhysiol, 276: C725–733.Google Scholar
  77. Feng, Y., Rainteau, D., Chachaty, C., Yu, Z-W, Wolf, C. and Quinn, P.J., 2004, Characterisation of a quasi-crystalline phase in codispersions of phosphatidylethanolamine and glucocerebroside. Biophys. J.,86: in press.Google Scholar
  78. Feron, O., Dessy, C., Opel, D.J., Arstall, M.A., Kelly, R.A. and Michel, T., 1998, Modulation of the endothelial nitric-oxide synthase-caveolin interaction in cardiac myocytes. Implications for the autonomic regulation of heart rate. JBiol Chem, 273: 30249–54.CrossRefGoogle Scholar
  79. Feron, O. and Kelly, R.A., 2001, The caveolar paradox: suppressing, inducing, and terminating eNOS signaling. Circ Res, 88: 129–131.PubMedCrossRefGoogle Scholar
  80. Feron, O., Smith, T.W., Michel, T. and Kelly, R.A., 1997, Dynamic targeting of the agoniststimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. JBiol Chem, 272: 17744–48.CrossRefGoogle Scholar
  81. Ferretti, A., Knijn, A., Raggi, C. and Sargiacomo, M., 2003, High resolution proton NMR measures mobile lipids associated with Triton-resistant membrane domains in haematopoietic K562 cells lacking or expressing caveolin-1. Eur Biophys J, 32: 83–95.PubMedGoogle Scholar
  82. Field, K.A., Holowka, D. and Baird, B., 1995, FcERI-mediated recruitment of p53/5& to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA, 92: 9201–9205.PubMedCrossRefGoogle Scholar
  83. Fivaz, M., Vilbois, F., Thurnheer, S., Passquali, C., Abrami, L., Bickel, P.E., Parton, R.G. and van der Goot, F.G., 2002, Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J, 21: 3989–4000.PubMedCrossRefGoogle Scholar
  84. Ford, M.L., Burton, L.J., Li, H., Graham, C.H., Frobert, Y., Grassi, J., Hall, S.M. and Morris, R.J., 2002, A marked disparity between the expression of prion protein and its message by neurons of the central nervous system. Neuroscience, 111: 533–551.PubMedCrossRefGoogle Scholar
  85. Fra, A.M., Masserini, M., Palestini, P., Sonnino, S. and Simons, K., 1995a, A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Letters, 375: 11–14.PubMedCrossRefGoogle Scholar
  86. Fra, A.M., Williamson, E., Simons, K. and Parton, R.G., 1995b, De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proceedings of the National Academy of Sciences of the United States of America, 92: 8655–59.PubMedCrossRefGoogle Scholar
  87. Frank, M., van der Haar, M.E., Schaeren-Wiemers, N. and Schwab, M.E., 1998, rMAL is a glycosphingolipid-associated protein of myelin and apical membranes of epithelial cells in kidney and stomach. JNeurosci,18: 4901–4913.Google Scholar
  88. Fridriksson, E.K., Shipkova, P.A., Sheets, E.D., Holowka, D., Baird, B. and McLafferty, F.W., 1999, Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry, 38: 8056–63.PubMedCrossRefGoogle Scholar
  89. Friedrichson, T. and Kurzchalia, T.V., 1998, Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature, 394: 802–805.PubMedCrossRefGoogle Scholar
  90. Fujimoto, T., 1996, GPI-anchored proteins, glycosphingolipids, and sphingomyelin are sequestered to caveolae only after crosslinking. J. Histochem. Cytochem: 44, 929–941.PubMedCrossRefGoogle Scholar
  91. Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K. and Nomura, R.., 2001, Caveolin-2 is targeted to lipid droplets, a new “membrane domain” in the cell. J Cell Biol, 152: 1079–1085.PubMedCrossRefGoogle Scholar
  92. Furtado, D., Williams, WP., Brain, A.P.R. and Quinn, P.J., 1979, Phase separation in membranes of Anacystis nidulans grown at different temperatures. Biochim Biophys Acta, 555: 352–357.PubMedCrossRefGoogle Scholar
  93. Gafencu, A., Stanescu, M., Toderici, A.M., Heltianu, C. and Simionescu, M., 1998, Protein and fatty acid composition of caveolae from apical plasmalemma of aortic endothelial cells. Cell Tissue Res, 293: 101–110.PubMedCrossRefGoogle Scholar
  94. Gagescu, R., Demaurex, N., Parton, R.G., Hunziker, W, Huber, L.A. and Gruenberg, J., 2000, The recycling endosome of madin-darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol Biol Cell, 11: 2775–91.PubMedGoogle Scholar
  95. Garnett, D., Barclay, A.N., Carmo, A.M. and Beyers, A.D., 1993, The association of the protein tyrosine kinases p561ck and p60fyn with the glycosyl phosphatidylinositol-anchored proteins Thy-1 and CD48 in rat thymocytes is dependent on the state of cellular activation. Eur Jlmmunol, 23: 2540–2544.CrossRefGoogle Scholar
  96. Ge, M., Field, K.A., Aneja, R., Holowka, D., Baird, B. and Freed, J.H., 1999, Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys J, 77: 925–933.PubMedCrossRefGoogle Scholar
  97. Gkantiragas, I., Brugger, B., Stuven, E., Kaloyanova, D., Li, X.Y., Lohr, K., Lottspeich, E, Wieland, ET. and Helms, J.B., 2001, Sphingomyelin-enriched microdomains at the Golgi complex. Mol Biol Cell, 12: 1819–1833.PubMedGoogle Scholar
  98. Gliss, C., Randel, O., Casalta, H., Sackmann, E., Zorn, R. and Bayer, T., 1999, Anisotrophic motion of cholesterol in orientated DPPC bilayers studied by quasielastic neutron scattering: the liquid-ordered phase. Biophysical J, 77: 331–340.CrossRefGoogle Scholar
  99. Goligorsky, M.S., Li, H., Brodsky, S. and Chen, J., 2002, Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am JPhysiol Renal Physiol,283: FI-10.Google Scholar
  100. Goodman, O B, Krupnick, J.G., Santini, E, Gurevich, V.V., Penn, R.B., Gagnon, A.W., Keen, J.H. and Benovic, J.L., 1996, f3-Arrestin acts as a clathrin adaptor in endocytosis of the 32-adrenergic receptor. Nature,383: 447–450.Google Scholar
  101. Grant, C.W., Mehlhorn, I.E., Florio, E. and Barber, K.R., 1987, A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim Biophys Acta, 902: 169–177.PubMedCrossRefGoogle Scholar
  102. Grassme, H., Jekle, A., Riehle, A., Schwarz, H., Berger, J., Sandhoff, K., Kolesnick, R. and Gulbins, E., 2001, CD95 signaling via ceramide-rich membrane rafts. JBiol Chem, 276: 20589–96.CrossRefGoogle Scholar
  103. Gronberg, L., Ruan, Z.S., Bittman, R. and Slotte, J.P., 1991, Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers. Biochemistry, 30: 10746–54.PubMedCrossRefGoogle Scholar
  104. Guo, W, Kurze, V, Huber, T., Afdhal, N.H., Beyer, K. and Hamilton, J.A., 2002, A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Biophys J, 83: 1465–1478.PubMedCrossRefGoogle Scholar
  105. Gun, M.I., Harwood, J.L. and Frayn, K.N., 2002, Lipid Biochemistry. Blackwell Science Ltd, Oxford.Google Scholar
  106. Habeeb, A.F.S.A. and Hiramoto, R., 1968, Reaction of proteins with glutaraldehyde. Arch. Biochem Biophys, 126: 16–26.PubMedCrossRefGoogle Scholar
  107. Haldar, K., Mohandas, N., Samuel, B.U., Harrison, T., Hiller, N.L., Akompong, T. and Cheresh, P., 2002, Protein and lipid trafficking induced in erythrocytes infected by malaria parasites. Cell Microbiol, 4: 383–395.PubMedCrossRefGoogle Scholar
  108. Hale, J.E. and Schroeder, E, 1982, Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol. Eur JBiochem, 122: 649–661.CrossRefGoogle Scholar
  109. Hancock, J.F., Cadwallader, K., Paterson, H. and Marshall, C.J., 1991, A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J, 10: 4033–4039.PubMedGoogle Scholar
  110. Hancock, J.F., Magee, A.I., Childs, J.E. and Marshall, C.J., 1989, All ras proteins are polyisoprenylated but only some are palmitoylated. Cell, 57: 1167–1177.PubMedCrossRefGoogle Scholar
  111. Hancock, J.F., Paterson, H. and Marshall, C.J., 1990, A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p2lras to the plasma membrane. Cell, 63: 133–139.PubMedCrossRefGoogle Scholar
  112. Hannun, Y.A. and Luberto, C., 2000, Ceramide in the eukaryotic stress response. Trends Cell Biol, 10: 73–80.PubMedCrossRefGoogle Scholar
  113. Hansen, G.H., Immerdal, L., Thorsen, E., Niels-Christiansen, L.L., Nystrom, B.T., Demant, E.J. and Danielsen, E.M., 2001, Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. JBiol Chem, 276: 32338–44.CrossRefGoogle Scholar
  114. Harder, T., Scheiffele, P., Verkade, R and Simons, K., 1998, Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol, 141: 929–942.PubMedCrossRefGoogle Scholar
  115. Harris, J.S., Epps, D.E., Davio, S.R. and Kezdy, F.J., 1995, Evidence for transbilayer, tailto-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes. Biochemistry, 34: 3851–57.PubMedCrossRefGoogle Scholar
  116. Hawtin, S.R., Tobin, A.B., Patel, S. and Wheatley, M., 2001, Palmitoylation of the vasopressin Vi a receptor reveals different conformational requirements for signaling, agonistinduced receptor phosphorylation, and sequestration. JBiol Chem, 276: 38139–46.Google Scholar
  117. Hayashi, M.K. and Haga, T., 1997, Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail. Arch Biochem Biophys, 340: 376–382.PubMedCrossRefGoogle Scholar
  118. He, Q. and Meiri, K.F., 2002, Isolation and characterization of detergent-resistant microdomains responsive to NCAM-mediated signaling from growth cones. Mol Cell Neurosci, 19: 18–31.PubMedCrossRefGoogle Scholar
  119. Heerklotz, H., 2002, Triton promotes domain formation in lipid raft mixtures. Biophys J, 83: 2693–2701.PubMedCrossRefGoogle Scholar
  120. Heimberg, T., Wiirtz, U. and Marsh, D., 1992, Binary phase diagram of hydrated dimyris-toylglycerol-dimyristoylphosphatidylcholine mixtures. Biophys. i, 63: 1369–1378.CrossRefGoogle Scholar
  121. Herman, B., 1989, Resonance energy transfer microscopy. Methods Cell Biol, 30: 219–243. Hollrigel, G.S., Morris, R.J. and Soltensz, I., 1998, Enhanced inhibitory charge transfer during bursts of IPSCs in dentate granule cells in mice with regionally inhibited LTP. Proc. Roy Soc Lond B, 265: 63–69.Google Scholar
  122. Holopainen, J.M., Subramanian, M. and Kinnunen, RK., 1998, Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry, 37: 17562–70.PubMedCrossRefGoogle Scholar
  123. Holowka, D., Sheets, E.D. and Baird, B., 2000, Interactions between Fc R1 and lipid raft components are regulated by the actin cytoskeleton. J Cell Sci, 113: 1009–19.PubMedGoogle Scholar
  124. Holthuis, J.C., Pomorski, T., Raggers, R.J., Sprong, H. and Van Meer, G., 2001, The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev, 81: 1689–1723.PubMedGoogle Scholar
  125. Hsueh, Y.W., Giles, R., Kitson, N. and Thewalt, J., 2002, The effect of ceramide on phosphatidylcholine membranes: a deuterium NMR study. Biophys J, 82: 3089–95.PubMedCrossRefGoogle Scholar
  126. Hueber, A.O., Bernard, A.M., Battari, C.L., Marguet, D., Massol, E, Foa, C., Brun, N., Garcia, S., Stewart, C., Pierres, M. and He, H.T., 1997, Thymocytes in Thy-1—/— mice show augmented TCR signaling and impaired differentiation. Curr Biol, 7: 705–708.PubMedCrossRefGoogle Scholar
  127. Hunt, A.N., Clark, G.T., Neale, J.R. and Postle, A.D., 2002, A comparison of the molecular specificities of whole cell and endonuclear phosphatidylcholine synthesis. FEBS Lett, 530: 89–93.PubMedCrossRefGoogle Scholar
  128. Huttner, W.B. and Zimmerberg, J., 2001, Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol, 13, 478–484.PubMedCrossRefGoogle Scholar
  129. Igbavboa, U., Avdulov, N.A., Chochina, S.V. and Wood, W.G., 1997, Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low-density lipoprotein receptor, apolipoprotein E, or both proteins. JNeurochem, 69: 1661–1667.CrossRefGoogle Scholar
  130. Ikonen, E., 2001, Roles of lipid rafts in membrane transport. Curr Opin Cell Biol, 13: 470–477.PubMedCrossRefGoogle Scholar
  131. Ikonen, E. and Parton, R.G., 2000, Caveolins and cellular cholesterol balance. Traffic, 1: 212–217.PubMedCrossRefGoogle Scholar
  132. Inglese, J., Koch, W.J., Caron, M.G. and Lefkowitz, R.J., 1992, Isoprenylation in regulation of signal transduction by G-protein-coupled receptor kinases. Nature, 359: 147–150.PubMedCrossRefGoogle Scholar
  133. Ipsen, J.H., Karlstrom, G., Mouritsen, O.G., Wennerstrom, H. and Zuckermann, M.J., 1987, Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta, 905: 162–172.PubMedCrossRefGoogle Scholar
  134. Itoh, K., Sakakibara, M., Yamasaki, S., Takeuchi, A., Arase, H., Miyazaki, M., Nakajima, N., Okada, M. and Saito, T., 2002, Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. Jlmmunol, 168: 541–544.Google Scholar
  135. Jaffrezou, J.P., Laurent, G. and Levade, T, 2002, Ceramide in regulation of apoptosis. Implication in multitoxicant resistance. Subcell Biochem, 36: 269–284.PubMedCrossRefGoogle Scholar
  136. Janes, P.W., Ley, S.C. and Magee, A.I., 1999, Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol, 147: 447–461.PubMedCrossRefGoogle Scholar
  137. Johnson, M.E., Berk, D.A., Blankschtein, D., Golan, D.E., Jain, R.K. and Langer, R.S., 1996, Lateral diffusion of small compounds in human stratum corneum and model lipid bilayer systems. Biophys J, 71: 2656–2668.PubMedCrossRefGoogle Scholar
  138. Kabouridis, P.S., Magee, A.I. and Ley, S.C., 1997, S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J, 16: 4983–4998.PubMedCrossRefGoogle Scholar
  139. Kan, C.C., Ruan, Z.S. and Bittman, R., 1991, Interaction of cholesterol with sphingomyelin in bilayer membranes: evidence that the hydroxy group of sphingomyelin does not modulate the rate of cholesterol exchange between vesicles. Biochemistry, 30: 7759–7766.PubMedCrossRefGoogle Scholar
  140. Kawabuchi, M., Satomi, Y., Takao, T., Shimonishi, Y., Nada, S., Nagai, K., Tarakhovsky, A. and Okada, M., 2000, Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature, 404: 999–1003.PubMedCrossRefGoogle Scholar
  141. Keller, P. and Simons, K., 1998, Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol, 140: 1357–1367.PubMedCrossRefGoogle Scholar
  142. Kier, A.B., Sweet, W.D., Cowlen, M.S. and Schroeder, F., 1986, Regulation of transbilayer distribution of a fluorescent sterol in tumor cell plasma membranes. Biochim Biophys Acta, 861: 287–301.PubMedGoogle Scholar
  143. Kikkawa, U. and Nishizuka, Y., 1986, The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol, 2: 149–178.PubMedCrossRefGoogle Scholar
  144. Kolesnick, R.N., Goni, F.M. and Alonso, A., 2000, Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol, 184: 285–300. Koynova, R. and Caffrey, M., 1995, Phases and phase transitions of the sphingolipids. Biochim Biophys Acta, 1255: 213–236.Google Scholar
  145. Krauss, K. and Altevogt, P., 1999, Integrin leukocyte function-associated antigen-1 -mediated cell binding can be activated by clustering of membrane rafts. J Biol Chem, 274: 36921–27.PubMedCrossRefGoogle Scholar
  146. Kroesen, B.J., Pettus, B., Luberto, C., Busman, M., Sietsma, H., de Leij, L. and Hannun, Y.A., 2001, Induction of apoptosis through B-cell receptor cross-linking occurs via de novo generated C16-ceramide and involves mitochondria. JBiol Chem, 276: 13606–14.Google Scholar
  147. Kurzchalia, T.V., Dupree, P., Parton, R.G., Kellner, R., Virta, H., Lehnert, M. and Simons, K., 1992, VIP21, a 21-kD membrane protein is an integral component of trans-Golginetwork-derived transport vesicles..1 Cell Biol., 118: 1003–1014.Google Scholar
  148. Lacalle, R.A., Mira, E., Gomez-Mouton, C., Jimenez-Baranda, S., Martinez-A., C. and Manes, S., 2002, Specific SHP-2 partitioning in raft domains triggers integrin-mediated signaling via Rho activation. J Cell Biol, 157: 277–289.Google Scholar
  149. Lalitha, S., Kumar, A.S., Stine, K.J. and Covey, DE, 2001, Enantiospecificity of sterol-lipid interactions: first evidence that the absolute configuration of cholesterol affects the physical properties of cholesterol-sphingomyelin membranes. Chem. Commun., 2001: 1192–1193.CrossRefGoogle Scholar
  150. Lamaze, C., Dujeancourt, A., Baba, T., Lo, C.G., Benmerah, A. and Dautry-Varsat, A., 2001, Interleukin 2 receptors and detergent-resistant membrane domains define a clathrinindependent endocytic pathway. Mol Cell, 7: 661–671.PubMedCrossRefGoogle Scholar
  151. Lang, D.M., Lommel, S., Jung, M., Ankerhold, R., Petrausch, B., Laessing, U., Wiechers, M.E, Plattner, H. and Stuermer, C.A., 1998, Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. JNeurobiol, 37: 502–523.CrossRefGoogle Scholar
  152. Lauer, S., VanWye, J., Harrison, T., McManus, H., Samuel, B.U., Hiller, N.L., Mohandas, N. and Haldar, K., 2000, Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J, 19: 3556–3564.PubMedCrossRefGoogle Scholar
  153. Lavie, Y., Cao, H., Volner, A., Lucci, A., Han, T.Y., Geffen, V, Giuliano, A.E. and Cabot, M.C., 1997, Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. JBiol Chem,272,:1682–7.Google Scholar
  154. Le Moyec, L., Legrand, O., Lauue, V, Kawakami, M., Marie, J.P., Calvo, F., Hantz, E. and Taillandier, E., 2000, Magnetic resonance spectroscopy of cellular lipid extracts from sensitive, resistant and reverting K562 cells and flow cytometry for investigating the P-glycoprotein function in resistance reversion. NMR Biomed., 13: 92–101.PubMedCrossRefGoogle Scholar
  155. Le, P.U., Guay, G., Altschuler, Y. and Nabi, I.R., 2002, Caveolin-1 is a negative regulator of cave- olae-mediated endocytosis to the endoplasmic reticulum. JBiol Chem, 277: 3371–3379.CrossRefGoogle Scholar
  156. Lee, H., Woodman, S.E., Engelman, J.A., Volonte, D., Galbiati, E, Kaufman, H.L., Lublin, D.M. and Lisanti, M.P., 2001, Palmitoylation of caveolin-1 at a single site, Cys-156, controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). JBiol Chem, 276: 35150–58.CrossRefGoogle Scholar
  157. Lee, K.H., Holdorf, A.D., Dustin, M.L., Chan, A.C., Allen, P.M. and Shaw, A.S., 2002, T cell receptor signaling precedes immunological synapse formation. Science, 295: 1539–1542.PubMedCrossRefGoogle Scholar
  158. Lefevre, T. and Picquart, M., 1996, Vitamin E-phospholipid interactions in model multilayer membranes: a spectroscopic study. Biospectroscopy, 2, 391–403.CrossRefGoogle Scholar
  159. Levade, T. and Jaffrezou, J.P., 1999, Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta, 1438: 1–17.PubMedCrossRefGoogle Scholar
  160. Leventis, R. and Silvius, J.R., 2001, Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. Biophys J, 81: 2257–67.PubMedCrossRefGoogle Scholar
  161. Li, X.M., Momsen, M.M., Smaby, J.M., Brockman, H.L. and Brown, R.E., 2001, Cholesterol decreases the interfacial elasticity and detergent solubility of sphingomyelins. Biochemistry, 40: 5954–63.PubMedCrossRefGoogle Scholar
  162. Liang, X., Lu, Y., Neubert, T.A. and Resh, M.D., 2002, Mass spectrometric analysis of GAP43/Neuromodulin reveals the presence of a variety of fatty acylated species. JBiol Chem, 277: 33032–40.CrossRefGoogle Scholar
  163. Liang, X., Nazarian, A., Erdjument-Bromage, H., Bornmann, W, Tempst, P. and Resh, M.D., 2001, Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. JBiol Chem, 276: 30987–94.CrossRefGoogle Scholar
  164. Lindwasser, O.W. and Resh, M.D., 2001, Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. JVirol, 75: 7913–7924.CrossRefGoogle Scholar
  165. Liu, Y.Y., Han, T.Y., Giuliano, A.E. and Cabot, M.C., 1999, Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. JBiol Chem, 274: 1140–1146.CrossRefGoogle Scholar
  166. Loisel, T.P, Ansanay, H., Adam, L., Marullo, S., Seifert, R., Lagace, M. and Bouvier, M., 1999, Activation of the ß2-adrenergic receptor-Gas complex leads to rapid depalmitoylation and inhibition of repalmitoylation of both the receptor and Gas. JBiol Chem, 274: 31014–19.CrossRefGoogle Scholar
  167. London, E., 2002, Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol, 12: 480–486.PubMedCrossRefGoogle Scholar
  168. London, E. and Brown, D.A., 2000, Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains, (rafts). Biochim Biophys Acta, 1508: 182–195.PubMedCrossRefGoogle Scholar
  169. Lopez-Garcia, E, Villalain, J., Gomez-Fernandez, J.C. and Quinn, P.J., 1994, The phase behavior of mixed aqueous dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Biophys J, 66: 1991–2004.PubMedCrossRefGoogle Scholar
  170. Luhrs, C.A. and Slomiany, B.L., 1989, A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. JBiol Chem, 264: 21446–49.Google Scholar
  171. Luria, A., Vegelyte-Avery, V, Stith, B., Tsvetkova, N.M., Wolkers, W.F., Crowe, J.H., Tablin, E. and Nuccitelli, R., 2002, Detergent-free domain isolated from Xenopus egg plasma membrane with properties similar to those of detergent-resistant membranes. Biochemistry, 41: 13189–97.PubMedCrossRefGoogle Scholar
  172. Madore, N., Smith, K.L., Graham, C.H., Jen, A., Brady, K., Hall, S. and Morris, R., 1999, Functionally different GPI proteins are organised in different domains on the neuronal surface. EMBO J, 18: 6917–6926.PubMedCrossRefGoogle Scholar
  173. Mairhofer, M., Steiner, M., Mosgoeller, W, Prohaska, R. and Salzer, U., 2002, Stomatin is a major lipid-raft component of platelet alpha granules. Blood, 100: 897–904.PubMedCrossRefGoogle Scholar
  174. Manes, S., del Real, G., Lacalle, R.A., Lucas, P., Gomez-Mouton, C., Sanchez-Palomino, S., Delgado, R., Alcami, J., Mira, E. and Martinez-A.C., 2000, Membrane raft microdomains mediate lateral assemblies required for HIV- 1 infection. EMBO Rep, 1: 190–196.PubMedCrossRefGoogle Scholar
  175. Mannock, D.A., Brain, A.P.R. and Williams, W.P., 1985, Phase behaviour of the membrane lipids of the thermophilic blue-green alga Anacystis nidulans. Biochim. Biophys. Acta, 821: 153–164.CrossRefGoogle Scholar
  176. Marchand, S., Devillers-Thiery, A., Pons, S., Changeux, J.P. and Cartaud, J., 2002, Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. JNeurosci, 22: 8891–8901.Google Scholar
  177. Martelli, A.M., Manzoli, L., Faenza, I., Bortul, R., Billi, A. and Cocco, L., 2002, Nuclear inositol lipid signaling and its potential involvement in malignant transformation. BiochimBiophysActa, 1603: I1–17.Google Scholar
  178. Martelli, A.M., Tabellini, G., Borgatti, P., Bortul, R., Capitani, S. and Neri, L.M., 2003, Nuclear lipids: New functions for old molecules? J Cell Biochem, 88: 455–461.PubMedCrossRefGoogle Scholar
  179. Martens, J.R., Sakamoto, N., Sullivan, S.A., Grobaski, T.D. and Tamkun, M.M., 2001, Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. JBiol Chem, 276: 8409–14.CrossRefGoogle Scholar
  180. Martin-Belmonte, F., Aryan, P. and Alonso, M.A., 2001, MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. JBiol Chem, 276: 49337–42.CrossRefGoogle Scholar
  181. Martin-Belmonte, E, Puertollano, R., Millan, J. and Alonso, M.A., 2000, The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines. Mol Biol Cell, 11: 2033–2045.PubMedGoogle Scholar
  182. Massey, J.B., 2001, Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim Biophys Acta, 1510: 167–184.PubMedCrossRefGoogle Scholar
  183. Mathias, S., Pena, L.A. and Kolesnick, R.N., 1998, Signal transduction of stress via ceramide. Biochem J, 335: 465–480.PubMedGoogle Scholar
  184. Mattjus, P, Bittman, R., Vilcheze, C. and Slotte, J.P, 1995, Lateral domain formation in cholesterol/phospholipid monolayers as affected by the sterol side chain conformation. Biochim Biophys Acta, 1240: 237–247.PubMedCrossRefGoogle Scholar
  185. Mattjus, P. and Slotte, J.P., 1996, Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipide? Chem Phys Lipids, 81: 69–80.PubMedCrossRefGoogle Scholar
  186. Maulik, P.R., Atkinson, D. and Shipley, G.G., 1986, X-ray scattering of vesicles of N-acyl sphingomyelins. Determination of bilayer thickness. Biophys J, 50: 1071–1077.PubMedCrossRefGoogle Scholar
  187. Mayor, S., Rothberg, K.G. and Maxfield, F.R., 1994, Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking Science, 264: 1948–1951.PubMedCrossRefGoogle Scholar
  188. McConville, M.J. and Ferguson, M.A.J., 1993, The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem. J, 294: 305–324.PubMedGoogle Scholar
  189. McIntosh, T.J., Simon, S.A., Needham, D. and Huang, C.H., 1992a, Interbilayer interactions between sphingomyelin and sphingomyelin/cholesterol bilayers. Biochemistry, 31: 20202024.Google Scholar
  190. McIntosh, T.J., Simon, S.A., Needham, D. and Huang, C.H., 1992b, Structure and cohesive properties of sphingomyelin/cholesterol bilayers. Biochemistry 31: 2012–2020.Google Scholar
  191. McMullen, T.P, Lewis, R.N. and McElhaney, R.N., 1999, Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers. Biochim Biophys Acta, 1416: 119–134.PubMedCrossRefGoogle Scholar
  192. Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G. and Brown, D.A., 1999, Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. JBiol Chem, 274: 3910–17.CrossRefGoogle Scholar
  193. Meyer, H.W., Westermann, M., Stumpf, M., Richter, W, Ulrich, A.S. and Hoischen, C., 1998, Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures “caveolae”. JStruct Biol, 124: 77–87.CrossRefGoogle Scholar
  194. Miao, L., Nielsen, M., Thewalt, J., Ipsen, J.H., Bloom, M., Zuckermann, M.J. and Mouritsen, O.G., 2002, From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J, 82: 1429–1444.PubMedCrossRefGoogle Scholar
  195. Milhiet, P.E., Giocondi, M.C. and Le Grimellec, C., 2002, Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models. JBiol Chem, 277: 875–878.CrossRefGoogle Scholar
  196. Millan, J., Puertollano, R., Fan, L. and Alonso, M.A., 1997, Caveolin and MAL, two protein components of internal detergent-insoluble membranes, are in distinct lipid microenvironments in MDCK cells. Biochem Biophys Res Commun, 233: 707–712.PubMedCrossRefGoogle Scholar
  197. Möbius, W, Ohno-Iwashita, Y., van Donselaar, E.G., Oorschot, VM., Shimada, Y, Fujimoto, T., Heijnen, H.F., Geuze, H.J. and Slot, J.W., 2002, Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem, 50: 43–55.PubMedCrossRefGoogle Scholar
  198. Möbius, W, van Donselaar, E., Ohno-Iwashita, Y, Shimada, Y, Heijnen, H.F.G., Slot, J.W. and Geuze, H.J., 2003, Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic, 4: 222–31.PubMedCrossRefGoogle Scholar
  199. Moffett, S., Brown, D.A. and Linder, M.E., 2000, Lipid-dependent targeting of G proteins into rafts. JBiol Chem, 275: 2191–2198.CrossRefGoogle Scholar
  200. Moffett, S., Rousseau, G., Lagace, M. and Bouvier, M., 2001, The palmitoylation state of the ßZ-adrenergic receptor regulates the synergistic action of cyclic AMP-dependent protein kinase and beta-adrenergic receptor kinase involved in its phosphorylation and desensitization. JNeurochem, 76: 269–279.CrossRefGoogle Scholar
  201. Mombelli, E., Morris, R.J., Taylor, W. and Fraternali, F., 2003, Hydrogen bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophys J, 84: 1507–1517.PubMedCrossRefGoogle Scholar
  202. Monier, S., Dietzen, D.J., Hastings, W.R., Lublin, D.M. and Kurzchalia, T.V., 1996, Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett, 388: 143–149.PubMedCrossRefGoogle Scholar
  203. Monks, C.R.E, Freiberg, B.A., Kupfer, H., Sciaky, N. and Kupfer, A., 1998, Three-dimensional segregation of supramolecular activation clusters in T cells. Nature, 395: 82–86. Montesano, R., 1979, Inhomogeneous distribution of filipin-sterol complexes in smoothGoogle Scholar
  204. muscle cell plasma membrane. Nature 280: 328–329.Google Scholar
  205. Moore, R.H., Sadovnikoff, N., Hoffenberg, S., Liu, S., Woodford, E, Angelides, K., Trial, J.A., Carsrud, N.D., Dickey, B.F. and Knoll, B.J., 1995, Ligand-stimulated beta 2-adrenergic receptor internalization via the constitutive endocytic pathway into rab5-containing endosomes. J Cell Sci, 108: 2983–2991.PubMedGoogle Scholar
  206. Mori, T., Takai, Y., Yu, B., Takahashi, J., Nishizuka, Y. and Fujikura, T., 1982, Specificity of the fatty acyl moieties of diacylglycerol for the activation of calcium-activated, phospholipid-dependent protein kinase. JBiochem (Tokyo), 91: 427–431.Google Scholar
  207. Morris, R., 1992, Thy-1, the enigmatic extrovert on the neuronal surface. BioEssays, 14: 715–722.PubMedCrossRefGoogle Scholar
  208. Morris, R.J. and Barber, P.C., 1983, Fixation of Thy-1 in nervous tissue for immunohistochemistry: a quantitative assessment of the effect of different fixation conditions upon retention of antigenicity and the cross-linking of Thy-1. JHistochem Cytochem, 31: 263–274.CrossRefGoogle Scholar
  209. Morrow, I.C., Rea, S., Martin, S., Prior, I.A., Prohaska, R., Hancock, J.F., James, D.E. and Parton, R.G., 2002, Flotillin-1/Reggie-2 traffics to surface raft domains via a Golgi-independent pathway; Identification of a novel membrane targeting domain and a role for palmitoylation. JBiol Chem, 277: 48834–41.CrossRefGoogle Scholar
  210. Morrow, M.R., Singh, D., Lu, D. and Grant, C.W.M., 1995, Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects. Biophys J, 68: 179–186.PubMedCrossRefGoogle Scholar
  211. Mukherjee, S. and Chattopadhyay, A., 1996, Membrane organization at low cholesterol concentrations: a study using 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled cholesterol. Biochemistry, 35: 1311–1322.PubMedCrossRefGoogle Scholar
  212. Mukherjee, S. and Maxfield, F.R., 2000, Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic, 1: 203–211.PubMedCrossRefGoogle Scholar
  213. Mukherjee, S., Zha, X, Tabas, I. and Maxfield, F.R., 1998, Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. Biophys J, 75: 1915–1925.PubMedCrossRefGoogle Scholar
  214. Muller, G., 2002, Dynamics of plasma membrane microdomains and cross-talk to the insulin signalling cascade. FEBS Lett, 531: 81–87.PubMedCrossRefGoogle Scholar
  215. Munro, S., 1995, An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J, 14: 4695–4704.PubMedGoogle Scholar
  216. Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V. and Simons, K., 1995, VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. USA, 92: 10339–43.PubMedCrossRefGoogle Scholar
  217. Murray, D., Hermida-Matsumoto, L., Buser, C.A., Tsang, J., Sigal, C.T., Ben-Tal, N., Honig, B., Resh, M.D. and McLaughlin, S., 1998, Electrostatics and the membrane association of Src: theory and experiment. Biochemistry, 37: 2145–2159.PubMedCrossRefGoogle Scholar
  218. Nabet, A., Boggs, J.M. and Pezolet, M., 1996, Study by infrared spectroscopy of the interdigitation of C26:0 cerebroside sulfate into phosphatidylcholine bilayers. Biochemistry, 35: 6674–6683.PubMedCrossRefGoogle Scholar
  219. Nagle, J.E and Tristram-Nagle, S., 2000, Structure of lipid bilayers. Biochim Biophys Acta, 1469: 159–195.PubMedCrossRefGoogle Scholar
  220. Nezil, F.A. and Bloom, M., 1992, Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys J, 61: 1176–1183.PubMedCrossRefGoogle Scholar
  221. Nguyen, D.H. and Hildreth, J.E., 2000, Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. JVirol, 74: 3264–72.CrossRefGoogle Scholar
  222. Nieva, J.L., Bron, R., Corver, J. and Wilschut, J., 1994, Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO J, 13: 2797–2804.PubMedGoogle Scholar
  223. Nishizuka, Y., 1992, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 258: 607–614.PubMedCrossRefGoogle Scholar
  224. Nolan, D.P., Jackson, D.G., Biggs, M.J., Brabazon, E.D., Pays, A., Van Laethem, F, Paturiaux-Hanocq, F, Elliot, J.F., Voorheis, H.P. and Pays, E., 2000, Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. JBiol Chem, 275: 4072–80.CrossRefGoogle Scholar
  225. O’Dowd, B.F., Hnatowich, M., Caron, M.G., Lefkowitz, R.J. and Bouvier, M., 1989, Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem, 264: 7564–7569.PubMedGoogle Scholar
  226. Oh, P. and Schnitzer, J.E., 2001, Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell, 12: 685–698.PubMedGoogle Scholar
  227. Ohba, Y., Morimitsu, Y. and Watarai, A., 1979, Reaction of formaldehyde with calf-thymus nucleohistone. Eur J Biochim., 100: 285–293.CrossRefGoogle Scholar
  228. Okamoto, T., Schlegel, A., Scherer, P.E. and Lisanti, M.P, 1998, Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. JBiol Chem, 273: 5419–5422.CrossRefGoogle Scholar
  229. Oradd, G., Lindblom, G., Fontell, K. and Ljusberg-Wahren, H., 1995, Phase diagram of soybean phosphatidylcholine-diacylglycerol-water studied by x-ray diffraction and 31P-and pulsed field gradient 1H-NMR: evidence for reversed micelles in the cubic phase. Biophys J, 68: 1856–1863.PubMedCrossRefGoogle Scholar
  230. Ortiz, A., Aranda, F.J. and Gomez-Fernandez, J.C., 1987, A differential scanning calorimetry study of the interaction of alpha-tocopherol with mixtures of phospholipids. Biochim Biophys Acta, 898: 214–222.PubMedCrossRefGoogle Scholar
  231. Ostermeyer, A.G., Beckrich, B.T., Ivarson, K.A., Grove, K.E. and Brown, D.A., 1999, Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. Methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein. JBiol Chem, 274: 34459–66.CrossRefGoogle Scholar
  232. Palestini, P., Allietta, M., Sonnino, S., Tettamanti, G., Thompson, T.E. and Tillack, T.W., 1995, Gel phase preference of ganglioside GM1 at low concentration in two-componentGoogle Scholar
  233. two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim Biophys Acta 1235: 221–230.Google Scholar
  234. Paratcha, G., Ledda, F., Baars, L., Coulpier, M., Besset, V., Anders, J., Scott, R. and Ibanez, C., 2001, Released GFRa1 potentiates downstream signaling, neuronal survival, and differentiation via a novel recruitment of c-ret to lipid rafts. Neuron, 29: 171–184.PubMedCrossRefGoogle Scholar
  235. Park, D.S., Woodman, S.E., Schubert, W, Cohen, A.W., Frank, P.G., Chandra, M., Shirani, J., Razani, B., Tang, B., Jelicks, L.A., Factor, S.M., Weiss, L.M., Tanowitz, H.B. and Lisanti, M.E, 2002, Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol, 160: 2207–2217.PubMedCrossRefGoogle Scholar
  236. Parkin, E.T., Turner, A.J. and Hooper, N.M., 2001, Differential effects of glycosphingolipids on the detergent-insolubility of the glycosylphosphatidylinositol-anchored membrane dipeptidase. Biochem J, 358: 209–216.PubMedCrossRefGoogle Scholar
  237. Parton, R.G., 2003, Timeline: Caveolae — from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol, 4: 162–167.PubMedCrossRefGoogle Scholar
  238. Pasenkiewicz-Gierula, M., Takaoka, Y., Miyagawa, H., Kitamura, K. and Kusumi, A., 1997, Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging vi hydrogen-bonded water. JPhys Chem, 101: 3677–3691.Google Scholar
  239. Patra, S.K., Alonso, A. and Goni, F.M., 1998, Detergent solubilisation of phospholipid bilayers in the gel state: the role of polar and hydrophobic forces. Biochim Biophys Acta, 1373: 112–118.PubMedCrossRefGoogle Scholar
  240. Peiro, S., Cornelia, J.X., Enrich, C., Martin-Zanca, D. and Rocamora, N., 2000, PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factor-induced, MAPK phosphorylation. JBiol Chem, 275: 37846–52.CrossRefGoogle Scholar
  241. Peles, E., Nativ, M., Lustig, M., Grumet, M., Schilling, J., Martinez, R., Plowman, G.D. and Schlessinger, J., 1997, Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J, 16: 978–988.PubMedCrossRefGoogle Scholar
  242. Pelkmans, L. and Helenius, A., 2002, Endocytosis via caveolae. Traffic, 3, 311–320. Pereira-Leal, J.B., Hume, A. N. and Seabra, M.C., 2001, Prenylation of Rab GTPases: molecular mechanisms and involvement in genetic disease. FEBS Lett, 498: 197–200.Google Scholar
  243. Perez, A.S. and Bredt, D.S., 1998, The N-terminal PDZ-containing region of postsynaptic density-95 mediates association with caveolar-like lipid domains. Neurosci Lett, 258: 121–123.PubMedCrossRefGoogle Scholar
  244. Peters, M.W., Barber, K.R. and Grant, C.W., 1984a, Lateral distribution of gangliosides in bilayer membranes: lipid and ionic effects. JNeurosci Res, 12: 343–353.CrossRefGoogle Scholar
  245. Peters, M.W., Mehlhorn, I.E., Barber, K.R. and Grant, C.W., 1984b, Evidence of a distribution difference between two gangliosides in bilayer membranes. Biochim Biophys Acta, 778: 419–428.PubMedCrossRefGoogle Scholar
  246. Pierini, L.M. and Maxfield, F.R., 2001, Flotillas of lipid rafts fore and aft. Proc NatlAcad Sci USA, 98: 9471–3.CrossRefGoogle Scholar
  247. Pike, L.J., Han, X., Chung, K.N. and Gross, R.W., 2002, Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry, 41: 2075–2088.PubMedCrossRefGoogle Scholar
  248. Pilch, RE, Shia, M.A., Benson, R.J. and Fine, R.E., 1983, Coated vesicles participate in the receptor-mediated endocytosis of insulin. J Cell Biol, 96: 133–138.PubMedCrossRefGoogle Scholar
  249. Pitto, M., Brunner, J., Ferraretto, A., Ravasi, D., Palestini, P. and Masserini, M., 2000, Use of a photoactivable GM1 ganglioside analogue to assess lipid distribution in caveolae bilayer. Glycoconj J, 17: 215–222.PubMedCrossRefGoogle Scholar
  250. Porter, J.A., Young, K.E. and Beachy, P.A., 1996, Cholesterol modification of Hedgehog signaling porteins in animal development. Science, 274: 255–259.PubMedCrossRefGoogle Scholar
  251. Porter, T.D., 2003, Supernatant protein factor and tocopherol-associated protein: an unexpected link between cholesterol synthesis and vitamin E (review). J Nutr Biochem, 14: 3–6.CrossRefGoogle Scholar
  252. Pralle, A., Keller, P., Florin, E.L., Simons, K. and Horber, J.K., 2000, Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. JCell Biol, 148: 997–1008.CrossRefGoogle Scholar
  253. Prats, M., Tocanne, J.F. and Teissie, J., 1987, Lateral proton conduction at a lipid/water interface. Effect of lipid nature and ionic content of the aqueous phase. Eur JBiochem, 162: 379–385.CrossRefGoogle Scholar
  254. Preiss, J., Loomis, C.R., Bishop, W.R., Stein, R., Niedel, J.E. and Bell, R.M., 1986, Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras-and sis-transformed normal rat kidney cells. JBiol Chem, 261: 8597–8600.Google Scholar
  255. Premont, R.T., Macrae, A.D., Stoffel, R.H., Chung, N., Pitcher, J.A., Ambrose, C., Inglese, J., MacDonald, M.E. and Lefkowitz, R.J., 1996, Characterization of the G protein-coupled receptor kinase GRK4. Identification of four splice variants. J Biol Chem, 271: 6403–6410.PubMedCrossRefGoogle Scholar
  256. Prior, I.A. and Hancock, J.F., 2001, Compartmentalization of Ras proteins. J Cell Sci, 114: 1603–1608.PubMedGoogle Scholar
  257. Prior, I.A., Harding, A., Yan, J., Sluimer, J., Parton, R.G. and Hancock, J.E, 2001, GTPdependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol, 3: 368–375.PubMedCrossRefGoogle Scholar
  258. Prior, I.A., Muncke, C., Parton, R.G. and Hancock, J.F., 2003, Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol., 160: 165–170.PubMedCrossRefGoogle Scholar
  259. Puertollano, R. and Alonso, M.A., 1999a, MAL, an integral element of the apical sorting machinery, is an itinerant protein that cycles between the trans-Golgi network and the plasma membrane. Mol Biol Cell, 10: 3435–3447.PubMedGoogle Scholar
  260. Puertollano, R. and Alonso, M.A., 1999b, Targeting of MAL, a putative element of the apical sorting machinery, to glycolipid-enriched membranes requires a pre-golgi sorting event. Biochem Biophys Res Commun, 254: 689–692.PubMedCrossRefGoogle Scholar
  261. Puertollano, R., Li, S., Lisanti, M.P. and Alonso, M.A., 1997, Recombinant expression of the MAL proteolipid, a component of glycolipid-enriched membrane microdomains, induces the formation of vesicular structures in insect cells. JBiol Chem, 272: 18311–15.CrossRefGoogle Scholar
  262. Puertollano, R., Martin-Belmonte, F., Milian, J., de Marco, M.C., Albar, J.P., Kremer, L. and Alonso, M.A., 1999a, The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Cell Biol, 145: 141–151.PubMedCrossRefGoogle Scholar
  263. Puertollano, R., Menendez, M. and Alonso, M.A., 1999b, Incorporation of MAL, an integral protein element of the machinery for the glycolipid and cholesterol-mediated apical pathway of transport, into artificial membranes requires neither of these lipid species. Biochem Biophys Res Commun, 266: 330–333.PubMedCrossRefGoogle Scholar
  264. Pyeta, P.S., Holowka, D. and Baird, B., 2001, Cross-correlation analysis of inner-leafletanchored green fluorescent protein co-redistributed with IgE receptors and outer leaflet lipid raft components. Biophys J, 80: 2120–32.CrossRefGoogle Scholar
  265. Qanbar, R. and Bouvier, M., 2003, Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther, 97: 1–33.PubMedCrossRefGoogle Scholar
  266. Quinn, P.J., 1985, A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology, 22: 28–46.CrossRefGoogle Scholar
  267. Quinn, P.J., 1995, Characterisation of clusters of alpha-tocopherol in gel and fluid phases of dipalmitoylglycerophosphocholine. Eur JBiochem, 233: 916–925.CrossRefGoogle Scholar
  268. Radhakrishnan, A., Li, X.M., Brown, RE. and McConnell, H.M., 2001, Stoichiometry of cholesterol-sphingomyelin condensed complexes in monolayers. Biochim Biophys Acta, 1511: 1–6.PubMedCrossRefGoogle Scholar
  269. Rajaram, S., Spangler, T.L., Sedensky, M.M. and Morgan, P.G., 1999, A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans. Genetics, 153: 1673–1682.PubMedGoogle Scholar
  270. Ramstedt, B. and Slotte, J.P., 2002, Membrane properties of sphingomyelins. FEBS Lett, 531: 33–37.PubMedCrossRefGoogle Scholar
  271. Rauch, C. and Farge, E., 2000, Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys J, 78: 3036–3047.PubMedCrossRefGoogle Scholar
  272. Razani, B., Combs, T.P., Wang, X.B., Frank, P.G., Park, D.S., Russell, R.G., Li, M., Tang, B., Jelicks, L.A., Scherer, RE. and Lisanti, M.P., 2002, Caveolin-l-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. JBiol Chem, 277: 8635–47.CrossRefGoogle Scholar
  273. Razani, B, Engelman, J A, Wang, X.B., Schubert, W, Zhang, X.L., Marks, C.B., Macaluso, F., Russell, R.G., Li, M., Pestell, R.G., Di Vizio, D., Hou, H., Jr., Kneitz, B., Lagaud, G., Christ, G.J., Edelmann, W. and Lisanti, M.P, 2001, Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 276: 38121–38.PubMedCrossRefGoogle Scholar
  274. Recktenwald, D.J. and McConnell, H.M., 1981, Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry, 20: 4505–10.PubMedCrossRefGoogle Scholar
  275. Reid-Taylor, K.L., Chu, J.W. and Sharom, F.J., 1999, Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide. Biochem Cell Biol, 77: 189–200.PubMedCrossRefGoogle Scholar
  276. Ren, J., Lew, S., Wang, J. and London, E., 1999, Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length. Biochemistry, 38: 5905–12.PubMedCrossRefGoogle Scholar
  277. Ren, J., Lew, S., Wang, Z. and London, E., 1997, Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration. Biochemistry, 36: 10213–20.PubMedCrossRefGoogle Scholar
  278. Resh, M.D., 1999, Fatty acylation of proteins: new insights into membrane targetting of myristolyated and palmitoylated proteins. Biochim Biophys Acta, 1451: 1–16.PubMedCrossRefGoogle Scholar
  279. Reyes Mateo, C., Ulises Acuna, A. and Brochon, J.C., 1995, Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys J, 68: 978–987.CrossRefGoogle Scholar
  280. Ricciarelli, R., Zingg, J.M. and Azzi, A., 2002, The 80th anniversary of vitamin E: beyond its antioxidant properties. Biol Chem, 383: 457–465.PubMedCrossRefGoogle Scholar
  281. Rietveld, A., Neutz, S., Simons, K. and Eaton, S., 1999, Association of sterol-and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem, 274: 12049–54.PubMedCrossRefGoogle Scholar
  282. Rijnboutt, S., Jansen, G., Posthuma, G., Hynes, J.B., Schornagel, J.H. and Strous, G.J., 1996, Endocytosis of GPI-linked membrane folate receptor-a. J Cell Biol, 132: 35–47.PubMedCrossRefGoogle Scholar
  283. Rinia, H.A., Snel, M.M., van der Eerden, J.P. and de Kruijff, B., 2001, Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett, 501: 92–96.PubMedCrossRefGoogle Scholar
  284. Robbins, S.M., Quintrell, N.A. and Bishop, J.M., 1995, Myristoylation and differential palmitoylation of the HCK protein-tyrosine kinases govern their attachment to membranes and association with caveolae. Mol Cell Biol, 15: 3507–3515.PubMedGoogle Scholar
  285. Roberts, W.L., Myher, J.J., Kuksis, A., Low, M.G. and Rosenberry, T.L., 1988, Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetyl-cholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositolspecific phospholipase C. JBiol Chem, 263: 18766–75.Google Scholar
  286. Robinson, P.J., 1991, Phosphatidylinositol membrane anchors and T-cell activation. Immunol Today, 12: 35–41.PubMedCrossRefGoogle Scholar
  287. Rodal, S.K., Skretting, G., Garred, O., Vilhardt, F., van Deurs, B. and Sandvig, K., 1999, Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrincoated endocytic vesicles. Mol Biol Cell, 10: 961–974.PubMedGoogle Scholar
  288. Rog, T. and Pasenkiewicz-Gierula, M., 2001a, Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: a molecular simulation study. Biophys J, 81: 2190–2202.PubMedCrossRefGoogle Scholar
  289. Rog, T. and Pasenkiewicz-Gierula, M., 2001b, Cholesterol effects on the phospholipid conden- sation and packing in the bilayer: a molecular simulation study. FEBS Lett, 502: 68–71.PubMedCrossRefGoogle Scholar
  290. Rogers, J., Lee, A.G. and Wilton, D.C., 1979, The organisation of cholesterol and ergosterol in lipid bilayers based on studies using non-perturbing fluorescent sterol probes. Biochim BiophysActa, 552: 23–37.CrossRefGoogle Scholar
  291. Roper, K., Corbeil, D. and Buttner, W.B., 2000, Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol, 2: 582–592.PubMedCrossRefGoogle Scholar
  292. Rousso, I. Mixon, M.B., Chen, B.K. and Kim, P.S., 2000, Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity. Proc NatlAcad Sci USA 97: 13523–25.Google Scholar
  293. Roy, D. and Mukhopadhyay, C., 2002, Molecular dynamics simulation of GM1 in phospholipid bilayer. JBiomol Struct Dyn, 19: 1121–1132.CrossRefGoogle Scholar
  294. Roy, M.O., Leventis, R. and Silvius, J.R., 2000, Mutational and biochemical analysis of plasma membrane targeting mediated by the farnesylated, polybasic carboxy terminus of K-ras4B. Biochemistry, 39, 8298–8307.PubMedCrossRefGoogle Scholar
  295. Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J.F. and Parton, R.G., 1999, Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol, 1: 98–105.PubMedCrossRefGoogle Scholar
  296. Rukmini, R., Rawat, S.S., Biswas, S.C. and Chattopadhyay, A., 2001, Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. Biophys J, 81: 2122–34.PubMedCrossRefGoogle Scholar
  297. Rybin, V.O., Xu, X., Lisanti, M.P. and Steinberg, S.F., 2000, Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem, 275: 41447–57.PubMedCrossRefGoogle Scholar
  298. Sabharanjak, S., Sharma, E, Parton, R.G. and Mayor, S., 2002, GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dey Cell, 2: 411–423.CrossRefGoogle Scholar
  299. Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C. and Prohaska, R., 2002, Cat+-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin, annexin VII, and sorcin. Blood, 99: 2569–2577.PubMedCrossRefGoogle Scholar
  300. Salzer, U. and Prohaska, R., 2001, Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood, 97: 1141–1143.PubMedCrossRefGoogle Scholar
  301. Samsonov, A.V., Chatterjee, P.K., Razinkov, V.I., Eng, C.H., Kielian, M. and Cohen, F.S., 2002, Effects of membrane potential and sphingolipid structures on fusion of Semliki Forest virus. JVirol, 76, 12691–702.CrossRefGoogle Scholar
  302. Samsonov, A.V., Mihalyov, I. and Cohen, ES., 2001, Characterization of cholesterolsphingomyelin domains and their dynamics in bilayer membranes. Biophys J, 81: 1486–1500.PubMedCrossRefGoogle Scholar
  303. Samuel, B.U., Mohandas, N., Harrison, T., McManus, H., Rosse, W, Reid, M. and Haldar, K., 2001, The role of cholesterol and glycosylphosphatidylinositol-anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. JBiol Chem, 276: 29319–29.CrossRefGoogle Scholar
  304. Sanan, D.A. and Anderson, R.G., 1991, Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. JHistochem Cytochem, 39: 1017–1024.CrossRefGoogle Scholar
  305. Sankaram, M.B. and Thompson, T.E., 1990a, Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry, 29: 10670–75.PubMedCrossRefGoogle Scholar
  306. Sankaram, M.B. and Thompson, T.E., 1990b, Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry, 29: 10676–84.PubMedCrossRefGoogle Scholar
  307. Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon-Cardo, C., Schuchman, E.H., Fuks, Z. and Kolesnick, R., 1996, Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell, 86: 189–199.PubMedCrossRefGoogle Scholar
  308. Sargiacomo, M., Sudol, M., Tang, Z. and Lisanti, M.P., 1993, Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol., 122: 789–807.PubMedCrossRefGoogle Scholar
  309. Saslowsky, D.E., Lawrence, J., Ren, X., Brown, D.A., Henderson, R.M. and Edwardson, J.M., 2002, Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. JBiol Chem, 277: 26966–70.CrossRefGoogle Scholar
  310. Scheiffele, P., Rietveld, A., Wilk, T. and Simons, K., 1999, Influenza viruses select ordered lipid domains during budding from the plasma membrane. JBiol Chem, 274: 2038–44.CrossRefGoogle Scholar
  311. Scheiffele, P, Roth, M.G. and Simons, K., 1997, Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J, 16: 5501–08.PubMedCrossRefGoogle Scholar
  312. Schmidt, C.F., Barenholz, Y., Huang, C. and Thompson, T.E., 1978, Monolayer coupling in sphingomyelin bilayer systems. Nature, 271: 775–777.PubMedCrossRefGoogle Scholar
  313. Schroeder, E, Nemecz, G., Wood, W.G., Joiner, C., Morrot, G., Ayraut-Jarrier, M. and Devaux, P.F., 1991, Transmembrane distribution of sterol in the human erythrocyte. Biochim Biophys Acta, 1066: 183–192.PubMedCrossRefGoogle Scholar
  314. Schroeder, R.J., Ahmed, S.N., Zhu, Y., London, E. and Brown, D.A., 1998, Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositolanchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. JBiol Chem, 273: 1150–1157.CrossRefGoogle Scholar
  315. Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A. and Simons, K., 2003, Resistance of cell membranes to different detergents. Proc Natl Acad Sci USA, 100: 5795–5800.PubMedCrossRefGoogle Scholar
  316. Schulte, T., Paschke, K.A., Laessing, U., Lottspeich, E. and Stuermer, C.A., 1997, Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development, 124: 577–587.PubMedGoogle Scholar
  317. Schutz, G.J., Kada, G., Pastushenko, V.P. and Schindler, H., 2000, Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J, 19: 892–901.PubMedCrossRefGoogle Scholar
  318. Scott, H.L., 2002, Modeling the lipid component of membranes. Curr Opin Struct Biol, 12: 495–502.PubMedCrossRefGoogle Scholar
  319. Seachrist, J.L., Anborgh, P.H. and Ferguson, S.S., 2000, 132 adrenergic receptor internalization, endosomal sorting and plasma membrane recycling are regulated by Rab GTPases. J Biol Chem 275: 27221–28.Google Scholar
  320. Sehgal, P.B., Guo, G.G., Shah, M., Kumar, V and Patel, K., 2002, Cytokine signaling: STATS in plasma membrane rafts. JBiol Chem, 277: 12067–74.CrossRefGoogle Scholar
  321. Sekiguchi, K., Tsukuda, M., Ase, K., Kikkawa, U. and Nishizuka, Y., 1988, Mode of activation and kinetic properties of three distinct forms of protein kinase C from rat brain. JBiochem (Tokyo), 103: 759–765.Google Scholar
  322. Semmler, K., Meyer, H.W. and Quinn, P.J., 2000, The structure and thermotropic phase behaviour of dipalmitoylphosphatidylcholine codispersed with a branched-chain phosphatidylcholine. Biochim Biophys Acta, 1509: 385–396.PubMedCrossRefGoogle Scholar
  323. Shahinian, S. and Silvius, J.R., 1995, Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry, 34: 3813–22.PubMedCrossRefGoogle Scholar
  324. Sheets, E.D., Holowka, D. and Baird, B., 1999, Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FccRI and their association with detergent-resistant membranes. J Cell Biol, 145: 877–887.PubMedCrossRefGoogle Scholar
  325. Siegel, D.P., Banschbach, J., Alford, D., Ellens, H., Lis, L.J., Quinn, P.J., Yeagle, P.L. and Bentz, J., 1989, Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. Biochemistry, 28: 3703–09.PubMedCrossRefGoogle Scholar
  326. Simons, K. and Gruenberg, J., 2000, Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol, 10: 459–462.PubMedCrossRefGoogle Scholar
  327. Simons, K. and Ikonen, E., 1997, Functional rafts in cell membranes. Nature, 387, 569–572. Simons, K. and Toomre, D., 2000, Lipid rafts and signal transduction. Nature Reviews: Molecular Cell Biology, 1: 31–39.CrossRefGoogle Scholar
  328. Simons, K. and van Meer, G., 1988, Lipid sorting in epithelial cells. Biochemistry, 27: 6197–6202.PubMedCrossRefGoogle Scholar
  329. Singer, S.J. and Nicolson, G.L., 1972, The fluid mosaic model of the structure of cell membranes. Science, 175: 720–731.PubMedCrossRefGoogle Scholar
  330. Smart, E.J., Ying, Y.S., Mineo, C. and Anderson, R.G., 1995, A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sei USA, 92: 10104–8.CrossRefGoogle Scholar
  331. Smondyrev, A.M. and Berkowitz, M.L., 1999, Structure of dipalmitoylphosphatidylcholine/ cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. Biophys J, 77: 2075–89.PubMedCrossRefGoogle Scholar
  332. Snyers, L., Umlauf, E. and Prohaska, R., 1998, Oligomeric nature of the integral membrane protein stomatin. JBiol Chem, 273: 17221–26.CrossRefGoogle Scholar
  333. Snyers, L., Umlauf, E. and Prohaska, R., 1999a, Association of stomatin with lipid-protein complexes in the plasma membrane and the endocytic compartment. Eur J Cell Biol, 78: 802–812.PubMedCrossRefGoogle Scholar
  334. Snyers, L., Umlauf, E. and Prohaska, R., 1999b, Cysteine 29 is the major palmitoylation site on stomatin. FEBS Lett, 449: 101–104.PubMedCrossRefGoogle Scholar
  335. Solomon, S., Masilamani, M., Rajendran, L., Bastmeyer, M., Stuermer, C.A. and Illges, H., 2002, The lipid raft microdomain-associated protein reggie-1/flotillin-2 is expressed in human B cells and localized at the plasma membrane and centrosome in PBMCs. Immunobiology, 205: 108–119.PubMedCrossRefGoogle Scholar
  336. Song, S.K., Li, S., Okamoto, T., Quilliam, L.A., Sargiacomo, M. and Lisanti, M.P, 1996, Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. JBiol Chem, 271: 9690–9697.CrossRefGoogle Scholar
  337. Sot, J., Collado, M.I., Arrondo, J.R.L., Alonso, A. and Goïù, F.M., 2002, Triton X-100-resistant bilayers: effect of lipid composition and relevance to the raft phenomenon. Langmuir, 18: 2828–2835.CrossRefGoogle Scholar
  338. Sotgia, E, Razani, B., Bonuccelli, G., Schubert, W, Battista, M., Lee, H., Capozza, E, Schubert, A.L., Minetti, C., Buckley, J.T. and Lisanti, M.P., 2002, Intracellular retention of glycosylphosphatidyl inositol-linked proteins in caveolin-deficient cells. Mol Cell Biol, 22: 3905–26.PubMedCrossRefGoogle Scholar
  339. Sowa, G., Pypaert, M. and Sessa, W.C., 2001, Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci USA, 98: 14072–77.PubMedCrossRefGoogle Scholar
  340. Sprong, H., van der Sluijs, P. and van Meer, G., 2001, How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol, 2: 504–513.PubMedCrossRefGoogle Scholar
  341. Stahl, N. and Yancopoulos, G.D., 1994, The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. JNeurobiol, 25: 1454–1466.CrossRefGoogle Scholar
  342. Stillwell, W, Dallman, T., Dumaual, A.C., Crump, F.T. and Jenski, L.J., 1996, Cholesterol versus alpha-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochemistry, 35: 13353–13362.PubMedCrossRefGoogle Scholar
  343. Stoffel, R.H., Inglese, J., Macrae, A.D., Lefkowitz, R.J. and Premont, R.T., 1998, Palmitoylation increases the kinase activity of the G protein-coupled receptor kinase, GRK6. Biochemistry, 37: 16053–16059.PubMedCrossRefGoogle Scholar
  344. Stoffel, R.H., Randall, R.R., Premont, R.T., Lefkowitz, R.J. and Inglese, J., 1994, Palmitoylation of G protein-coupled receptor kinase, GRK6. Lipid modification diversity in the GRK family. JBiol Chem, 269: 27791–94.Google Scholar
  345. Stuermer, C.A., Lang, D.M., Kirsch, E, Wiechers, M., Deininger, S.O. and Plattner, H., 2001, Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell, 12: 3031–3045.PubMedGoogle Scholar
  346. Stulnig, T.M., Berger, M., Sigmund, T., Raederstorff, D., Stockinger, H. and Waldhäusl, W, 1998, Polyunsaturated fatty acids inhibit T cell signal transduction by modification of detergent-insoluble membrane domains. J Cell Biol, 143, 637–644.PubMedCrossRefGoogle Scholar
  347. Subczynski, W.K., Wisniewska, A., Yin, J.J., Hyde, J.S. and Kusumi, A., 1994, Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry, 33: 7670–7681.PubMedCrossRefGoogle Scholar
  348. Subtil, A., Gaidarov, I., Kobylarz, K., Lampson, M.A., Keen, J.H. and McGraw, T.E., 1999, Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc Natl Acad Sci USA, 96: 6775–6780.PubMedCrossRefGoogle Scholar
  349. Sunyach, C., Jen, A., Deng, J., Fitzgerald, K., Frobert, Y., McCaffrey, M. and Morris, R.J., 2003, The mechanism of internalisation of GPI anchored prion protein. EMBO J, 22: 2591–2601.CrossRefGoogle Scholar
  350. Szollosi, J., Damjanovich, S., Mulhern, S.A. and Tron, L., 1987, Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: a critical review. Prog. Biophys. molec. Biol., 49: 65–87.CrossRefGoogle Scholar
  351. Takahashi, H., Hatta, I. and Quinn, PJ., 1996, Cubic phases in hydrated 1:1 and 1:2 dipalmi- toylphosphatidylcholine-dipalmitoylglycerol mixtures. Biophys J, 70: 1407–1411.PubMedCrossRefGoogle Scholar
  352. Takeuchi, S., Takayama, Y., Ogawa, A., Tamura, K. and Okada, M., 2000, Transmembrane phosphoprotein cbp positively regulates the activity of the carboxyl-terminal src kinase, Csk. JBiol Chem, 275: 29183–86.CrossRefGoogle Scholar
  353. Tansey, M.G., Baloh, R.H., Milbrandt, J. and Johnson, E.M., Jr., 2000, GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron, 25: 611–623.PubMedCrossRefGoogle Scholar
  354. Tatulian, S.A. and Tamm, L.K., 2000, Secondary structure, orientation, oligomerization, and lipid interactions of the transmembrane domain of influenza hemagglutinin. Biochemistry, 39: 496–507.PubMedCrossRefGoogle Scholar
  355. Tavernarakis, N., Driscoll, M. and Kyrpides, N.C., 1999, The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci, 24: 425–427.PubMedCrossRefGoogle Scholar
  356. Thai, T.P., Heid, H., Rackwitz, H.R., Hunziker, A., Gorgas, K. and Just, W.W., 1997, Ether lipid biosynthesis: isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase. FEBS Lett, 420: 205–211.PubMedCrossRefGoogle Scholar
  357. Thai, T.P., Rodemer, C., Jauch, A., Hunziker, A., Moser, A., Gorgas, K. and Just, W.W., 2001, Impaired membrane traffic in defective ether lipid biosynthesis. Hum Mol Genet, 10: 127–136.PubMedCrossRefGoogle Scholar
  358. The, T.H. and Feltkamp, T.E.W., 1970, Conjugation of fluorescein isothiocyanate to antibodies. I. Experiments on the conditions of conjugation. Immunology, 18: 865–873.PubMedGoogle Scholar
  359. Thewalt, J.L. and Bloom, M., 1992, Phosphatidylcholine: cholesterol phase diagrams. Biophys J, 63, 1176–1181.PubMedCrossRefGoogle Scholar
  360. Thomsen, P., Roepstorff, K., Stahlhut, M. and van Deurs, B., 2002, Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell, 13: 238–250.PubMedCrossRefGoogle Scholar
  361. Tieleman, D.P., Marrink, S.J. and Berendsen, H.J., 1997, A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta, 1331: 235–270.PubMedCrossRefGoogle Scholar
  362. Tiveron, M.C., Nosten-Bertrand, M., Jani, H., Garnett, D., Hirst, E.M.A., Grosveld, E and Morris, R.J., 1994, The mode of anchorage to the cell surface determines both the function and membrane location of Thy-1 glycoprotein. J Cell Sci, 107: 1783–96.PubMedGoogle Scholar
  363. Torgersen, K.M., Vang, T., Abrahamsen, H., Yaqub, S., Horejsi, V, Schraven, B., Rolstad, B., Mustelin, T. and Tasken, K., 2001, Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase, Csk, from lipid rafts. J Biol Chem, 276: 29313–18.PubMedCrossRefGoogle Scholar
  364. Tse, A.G.D., Barclay, A.N., Watts, A. and Williams, A.F., 1985, A glycophospholipid tail at the carboxyl terminus fo the Thy-1 glycoprotein of neurons and thymocytes. Science, 230: 1003–1008.PubMedCrossRefGoogle Scholar
  365. Tsvetkova, N.M., Brain, A.P.R. and Quinn, P.J., 1994, Structural characteristics of thylakoid membranes of Arabidopsis mutants deficient in lipid fatty acid desaturation. Biochim Biophys. Acta, 1192: 263–271.PubMedCrossRefGoogle Scholar
  366. Tu, Y., Popov, S., Slaughter, C. and Ross, E.M., 1999, Palmitoylation of a conserved cysteine in the regulator of G protein signaling, RGS, domain modulates the GTPase-activating activity of RGS4 and RGS 10. JBiol Chem, 274, 38260–67.CrossRefGoogle Scholar
  367. Uittenbogaard, A. and Smart, E.J., 2000, Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. JBiol Chem, 275: 25595–99.CrossRefGoogle Scholar
  368. Vainio, S., Heino, S., Mansson, J.E., Fredman, P., Kuismanen, E., Vaarala, O. and Ikonen, E., 2002, Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep, 3: 95–100.PubMedCrossRefGoogle Scholar
  369. Van Blitterswijk, W.J., Van Der Luit, A.H., Veldman, R.J., Verheij, M. and Borst, J., 2003, Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J, 369: 199–211.PubMedCrossRefGoogle Scholar
  370. van der Goot, F.G. and Harder, T., 2001, Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Semin Immunol, 13: 89–97.PubMedCrossRefGoogle Scholar
  371. van Klompenburg, W, Nilsson, I., von Heijne, G. and de Kruijff, B., 1997, Anionic phospholipide are determinants of membrane protein topology. EMBO J, 16: 4261–6.PubMedCrossRefGoogle Scholar
  372. van’t Hof, W. and Resh, M.D., 1999, Dual fatty acylation of p59(Fyn), is required for association with the T cell receptor zeta chain through phosphotyrosine-Src homology domain-2 interactions. J Cell Biol, 145: 377–389.CrossRefGoogle Scholar
  373. Vandecasteele, G., Eschenhagen, T., Scholz, H., Stein, B., Verde, I. and Fischmeister, R., 1999, Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med, 5: 331–334.PubMedCrossRefGoogle Scholar
  374. Varma, R. and Mayor, S., 1998, GPI-anchored proteins are organized in submicron domains at the cell surface. Nature, 394: 798–801.PubMedCrossRefGoogle Scholar
  375. Veldman, R.J., Maestre, N., Aduib, O.M., Medin, J.A., Salvayre, R. and Levade, T., 2001, A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J, 355: 859–868.PubMedGoogle Scholar
  376. Venkataraman, K. and Futerman, A.H., 2000, Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol, 10: 408–412.PubMedCrossRefGoogle Scholar
  377. Vilhardt, E, Nielsen, M., Sandvig, K. and van Deurs, B., 1999, Urokinase-type plasminogen activator receptor is internalized by different mechanisms in polarized and nonpolarized Madin-Darby canine kidney epithelial cells. Mol Biol Cell, 10: 179–195.PubMedGoogle Scholar
  378. Vincent, S., Gerlier, D. and Manie, S.N., 2000, Measles virus assembly within membrane rafts. J Virol, 74: 9911–5.PubMedCrossRefGoogle Scholar
  379. Vist, M.R. and Davis, J.H., 1990, Phase equilibria of cholesterolldipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry, 29: 451–464.PubMedCrossRefGoogle Scholar
  380. Volonte, D., Galbiati, E, Li, S., Nishiyama, K., Okamoto, T. and Lisanti, M.P., 1999, Flotillins/cavatellins are differentially expressed in cells and tissues and form a heterooligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. JBiol Chem, 274: 12702–09.CrossRefGoogle Scholar
  381. Vyas, K.A., Patel, H.V., Vyas, A.A. and Schnaar, R.L., 2001, Segregation of gangliosides GMl and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem, 382: 241–250.PubMedCrossRefGoogle Scholar
  382. Wang, T.Y., Leventis, R. and Silvius, J.R., 2000, Fluorescence-based evaluation of the partitioning of lipids and lipidated peptides into liquid-ordered lipid microdomains• a model for molecular partitioning into “lipid rafts”. Biophys J, 79: 919–933.PubMedCrossRefGoogle Scholar
  383. Wang, T.Y., Leventis, R. and Silvius, J.R., 2001, Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. Biochemistry, 40: 13031–40.PubMedCrossRefGoogle Scholar
  384. Wang, T.Y. and Silvius, J.R., 2001, Cholesterol does not induce segregation of liquid-ordered domains in bilayers modeling the inner leaflet of the plasma membrane. Biophys J, 81: 2762–73.PubMedCrossRefGoogle Scholar
  385. Wang, T.Y. and Silvius, J.R., 2003, Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys J, 84: 367–378.PubMedCrossRefGoogle Scholar
  386. Wang, X. and Quinn, P.J., 1999, The effect of alpha-tocopherol on the thermotropic phase behaviour of dipalmitoylphosphatidylethanolamine. A synchrotron X-ray diffraction study. EurJBiochem, 264: 1–8.Google Scholar
  387. Wang, X. and Quinn, P.J., 2000a, The distribution of alpha-tocopherol in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine. Biochim Biophys Acta, 1509: 361–372.PubMedCrossRefGoogle Scholar
  388. Wang, X. and Quinn, P.J., 2000b, Preferential interaction of alpha-tocopherol with phosphatidylcholines in mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine. Eur JBiochem, 267: 6362–6368.CrossRefGoogle Scholar
  389. Wang, X. and Quinn, P.J., 2002, Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine. Biochim Biophys Acta, 1564: 66–72.PubMedCrossRefGoogle Scholar
  390. Webb, Y., Hermida-Matsumoto, L. and Resh, M.D., 2000, Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalrnitate and polyunsaturated fatty acids. JBiol Chem, 275: 261–270.CrossRefGoogle Scholar
  391. Wedegaertner, P.B., Wilson, P.T. and Bourne, H.R., 1995, Lipid modifications of trimeric G proteins. JBiol Chem, 270: 503–506.CrossRefGoogle Scholar
  392. Werlen, G. and Palmer, E., 2002, The T-cell receptor signalosome: a dynamic structure with expanding complexity. Curr Opin Immunol, 14: 299–305.PubMedCrossRefGoogle Scholar
  393. Williams, WP, Sen, A. and Quinn, PJ., 1982, Protein-lipid interactions in the photosynthetic membrane. Biochem Soc Trans, 10: 335–338.PubMedGoogle Scholar
  394. Wilson, B.S., Pfeiffer, J.R. and Oliver, J.M., 2000, Observing FcepsilonRl signaling from the inside of the mast cell membrane. J Cell Biol, 149: 1131–1142.PubMedCrossRefGoogle Scholar
  395. Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. and Oliver, J.M., 2001, High resolution mapping of mast cell membranes reveals primary and secondary domains of FcERI and LAT. J Cell Biol, 154: 645–658.PubMedCrossRefGoogle Scholar
  396. Wood, W.G., Schroeder, E, Hogy, L., Rao, A.M. and Nemecz, G., 1990, Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption. Biochim Biophys Acta, 1025: 243–246.PubMedCrossRefGoogle Scholar
  397. Woodman, S.E., Park, D.S., Cohen, A.W., Cheung, M.W., Chandra, M., Shirani, J., Tang, B., Jelicks, L.A., Kitsis, R.N., Christ, G.J., Factor, S.M., Tanowitz, H.B. and Lisanti, M.P., 2002a, Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. JBiol Chem, 277: 38988–97.CrossRefGoogle Scholar
  398. Woodman, S.E., Schlegel, A., Cohen, A.W. and Lisanti, M.P., 2002b, Mutational analysis identifies a short atypical membrane attachment sequence (KYWFYR), within caveolin1. Biochemistry, 41: 3790–95.PubMedCrossRefGoogle Scholar
  399. Xiang, Y., Rybin, V.O., Steinberg, S.F. and Kobilka, B., 2002, Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem, 277: 34280–86.PubMedCrossRefGoogle Scholar
  400. Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C. and London, E., 2001, Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains, (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. JBiol Chem, 276: 33540–46.CrossRefGoogle Scholar
  401. Xu, X. and London, E., 2000, The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry, 39: 843–849.PubMedCrossRefGoogle Scholar
  402. Yasuda, K., Nagafuku, M., Shima, T., Okada, M., Yagi, T., Yamada, T., Minaki, Y, Kato, A., Tani-Ichi, S., Hamaoka, T. and Kosugi, A., 2002, Cutting edge: Fyn is essential for tyrosine phosphorylation of Csk-binding protein/phosphoprotein associated with glycolipidenriched microdomains in lipid rafts in resting T cells. Jlmmunol, 169: 2813–17.Google Scholar
  403. Ying, Y.S., Anderson, R.G. and Rothberg, K.G., 1992, Each caveola contains multiple glycosylphosphatidylinositol-anchored membrane proteins. Cold Spring Harbor Symp Quant Biol, 57: 593–604.PubMedCrossRefGoogle Scholar
  404. Yuan, C., Furlong, J., Burgos, P. and Johnston, L.J., 2002, The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J, 82: 2526–35.PubMedCrossRefGoogle Scholar
  405. Yuan, C. and Johnston, L.J., 2000, Distribution of ganglioside GM1 in L-alpha-dipalmitoylphosphatidylcholine/cholesterol monolayers: a model for lipid rafts. Biophys J, 79: 2768–81.PubMedCrossRefGoogle Scholar
  406. Yuan, C. and Johnston, L.J., 2001, Atomic force microscopy studies of ganglioside GM1 domains in phosphatidylcholine and phosphatidylcholine/cholesterol bilayers. Biophys J, 81: 1059–1069.PubMedCrossRefGoogle Scholar
  407. Zacharias, D.A., Violin, J.D., Newton, A.C. and Tsien, R.Y., 2002, Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 296: 913–916.PubMedCrossRefGoogle Scholar
  408. Zhang, W, Sloan-Lancaster, J., Kitchen, J., Trible, R.P. and Samelson, L.E., 1998a, LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell, 92: 83–92.PubMedCrossRefGoogle Scholar
  409. Zhang, W, Trible, R.P. and Samelson, L.E., 1998b, LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity, 9: 239–246.PubMedCrossRefGoogle Scholar
  410. Zimmerberg, J., 2000, Are the curves in all the right places? Traffic, 1: 366–368.PubMedCrossRefGoogle Scholar
  411. Zlatkine, E, Mehul, B. and Magee, A.I., 1997, Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J Cell Sci, 110: 673–679.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Roger Morris
    • 1
  • Helen Cox
    • 2
  • Enrico Mombelli
    • 1
  • Peter J. Quinn
    • 3
  1. 1.Molecular Neurobiology Group, MRC Centre for Developmental NeurobiologyKing’s CollegeLondonUK
  2. 2.Centre for Neuroscience ResearchKing’s CollegeLondonUK
  3. 3.School of Life SciencesKing’s CollegeLondonUK

Personalised recommendations