Oxidative Stress, Caveolae and Caveolin-1

  • Marie-Odile Parat
  • Paul L. Fox
Part of the Subcellular Biochemistry book series (SCBI, volume 37)

Abstract

Oxidative stress underlies a range of pathophysiological conditions. Reactive oxygen species are also generated intracellularly to serve as second messengers and some are linked to caveolae/raft signalling systems. The effect of oxidative stress on caveolin-1 expression, post-translational modifications, membrane trafficking and function are described.

Keywords

Reactive Oxygen Species Nitric Oxide Tyrosine Phosphorylation Cholesterol Oxidase Bovine Aortic Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. G., Kamen, B. A., Rothberg, K. G., and Lacey, S. W. (1992). Potocytosis: Sequestration and transport of small molecules by caveolae. Science 255, 410–411.PubMedCrossRefGoogle Scholar
  2. Aoki, T., Nomura, R., and Fujimoto, T. (1999). Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp. Cell Res. 253, 629–636.PubMedCrossRefGoogle Scholar
  3. Benlimame, N., Le, P. U., and Nabi, I. R. (1998). Localization of autocrine motility factor receptor to caveolae and clathrin-independent internalization of its ligand to smooth endoplasmic reticulum. Mol. Biol. Cell 9, 1773–1786.PubMedGoogle Scholar
  4. Blair, A., Shaul, P. W, Yuhanna, I. S., Conrad, P. A., and Smart, E. J. (1999). Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J. Biol. Chem. 274, 32512–32519.PubMedCrossRefGoogle Scholar
  5. Cominacini, L., Pasini, A. E, Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., Rigoni, A., Pastorino, A. M., Lo Cascio, V., and Sawamura, T. (2000). Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-KB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 275, 12633–12638.PubMedCrossRefGoogle Scholar
  6. Das, K., Lewis, R. Y., Scherer, P. E., and Lisanti, M. P. (1999). The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J. Biol. Chem. 274, 18721–18728.PubMedCrossRefGoogle Scholar
  7. de Marco, M. C., Kremer, L., Albar, J. P., Martinez-Menarguez, J. A., Ballesta, J., Garcia-Lopez, M. A., Marazuela, M., Puertollano, R., and Alonso, M. A. (2001). Bene, a novel raft-associated protein of the mal proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. J. Biol. Chem. 276, 23009–23017.PubMedCrossRefGoogle Scholar
  8. Dietzen, D. J., Hastings, W. R., and Lublin, D. M. (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270, 6838–6842.PubMedCrossRefGoogle Scholar
  9. Doukyu, N., and Aono, R. (1999). Two moles of 02 consumption and one mole of H2O2 formation during cholesterol peroxidation with cholesterol oxidase from Pseudomonas sp. strain ST-200. Biochem. J. 341, 621–627.PubMedCrossRefGoogle Scholar
  10. Dupree, E, Parton, R. G., Raposo, G., Kurzchalia, T. V., and Simons, K. (1993). Caveolae and sorting in the trans-golgi network of epithelial cells. EMBO J. 12, 1597–1605.PubMedGoogle Scholar
  11. Fielding, C. J., Bist, A., and Fielding, P. E. (1997). Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl. Acad. Sci. U.S.A. 94, 3753–3758.PubMedCrossRefGoogle Scholar
  12. Finkel, T. (2001). Reactive oxygen species and signal transduction. IUBMB Life 52, 3–6.PubMedCrossRefGoogle Scholar
  13. Fra, A. M., Williamson, E., Simons, K., and Parton, R. G. (1995). De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl. Acad. Sci. U.S.A. 92,8655–8659.PubMedCrossRefGoogle Scholar
  14. Galbiati, F., Volonte, D., Minetti, C., Chu, J. B., and Lisanti, M. P. (1999). Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the Golgi complex. J. Biol. Chem. 274, 25632–25641.PubMedCrossRefGoogle Scholar
  15. Garcia-Cardena, G., Fan, R., Shah, V, Sorrentino, R., Cirino, G., Papapetropoulos, A., and Sessa, W. C. (1998). Dynamic activation of endothelial nitric oxide synthase by hsp90. Nature 392, 821–824.PubMedCrossRefGoogle Scholar
  16. Garcia-Cardena, G., Martasek, P, Masters, B. S., Skidd, P. M., Couet, J., Li, S., Lisanti, M. P., and Sessa, W. C. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440.PubMedCrossRefGoogle Scholar
  17. Garcia-Cardena, G., Oh, E, Liu, J., Schnitzer, J. E., and Sessa, W. C. (1996). Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: Implications for nitric oxide signaling. Proc. Natl. Acad. Sci. U.S.A. 93, 6448–6453.PubMedCrossRefGoogle Scholar
  18. Glenney, J. R., Jr. (1989). Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J. Biol. Chem. 264, 20163–20166.PubMedGoogle Scholar
  19. Glenney, J. R., Jr., and Zokas, L. (1989). Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J. Cell Biol. 108, 2401–2408.PubMedCrossRefGoogle Scholar
  20. Gniadecki, R., Christoffersen, N., and Wulf, H. C. (2002). Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes: Importance in the baseline and UVA-induced generation of reactive oxygen species. J. Invest. Dermatol. 118, 582–588.PubMedCrossRefGoogle Scholar
  21. Goligorsky, M. S., Li, H., Brodsky, S., and Chen, J. (2002). Relationships between caveolae and eNOS: Everything in proximity and the proximity of everything. Am. J. Physiol. Renal Physiol. 283, F1–10.PubMedGoogle Scholar
  22. Govers, R., and Rabelink, T. J. (2001). Cellular regulation of endothelial nitric oxide synthase. Am. J. Physiol. Renal Physiol. 280, F193–206.PubMedGoogle Scholar
  23. Gustaysson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., and Stralfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961–1971.Google Scholar
  24. Hailstones, D., Sleer, L. S., Parton, R. G., and Stanley, K. K. (1998). Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39, 369–379.PubMedGoogle Scholar
  25. Henley, J. R., Krueger, E. W, Oswald, B. J., and McNiven, M. A. (1998). Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99.PubMedCrossRefGoogle Scholar
  26. Kang, Y. S., Ko, Y. G., and Seo, J. S. (2000). Caveolin internalization by heat shock or hyper-osmotic shock. Exp. Cell Res. 255, 221–228.PubMedCrossRefGoogle Scholar
  27. Kim, Y. N., Dam, P., and Bertics, P. J. (2002). Caveolin-1 phosphorylation in human squamous and epidermoid carcinoma cells: Dependence on erbB1 expression and Src activation. Exp. Cell Res. 280, 134–147.PubMedCrossRefGoogle Scholar
  28. Kim, Y. N., Wiepz, G. J., Guadarrama, A. G., and Bertics, P. J. (2000). Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J. Biol. Chem. 275, 7481–7491.PubMedCrossRefGoogle Scholar
  29. Ko, Y. G., Liu, P., Pathak, R. K., Craig, L. C., and Anderson, R. G. (1998). Early effects of PP60°S“ kinase activation on caveolae. J. Cell Biochem. 71, 524–535.PubMedCrossRefGoogle Scholar
  30. Kojda, G., and Harrison, D. (1999). Interactions between NO and reactive oxygen species: Pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc. Res. 43, 562–571.PubMedCrossRefGoogle Scholar
  31. Le, P. U.,Guay, G., Altschuler, Y. and Nabi, I. R. (2002). Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 277, 3371–3379.Google Scholar
  32. Lee, H., Park, D. S., Wang, X. B., Scherer, P. E., Schwartz, P. E., and Lisanti, M. P. (2002). Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J. Biol. Chem. 277, 34556–34567.PubMedCrossRefGoogle Scholar
  33. Lee, H., Volonte, D., Galbiati, E, Iyengar, P, Lublin, D. M., Bregman, D. B., Wilson, M. T., Campos-Gonzalez, R., Bouzahzah, B., Pestell, R. G., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: Identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol. Endocrinol. 14, 1750–1775.PubMedCrossRefGoogle Scholar
  34. Lee, H., Woodman, S E, Engelman, J. A., Volonte, D., Galbiati, F., Kaufman, H. L., Lublin, D. M., and Lisanti, M. P. (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase. Targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (Tyr-14). J. Biol. Chem. 276, 35150–35158.PubMedCrossRefGoogle Scholar
  35. Li, H., Brodsky, S., Basco, M., Romanov, V, De Angelis, D. A., and Goligorsky, M. S. (2001). Nitric oxide attenuates signal transduction: Possible role in dissociating caveolin-1 scaffold. Circ. Res. 88, 229–236.PubMedCrossRefGoogle Scholar
  36. Li, S., Couet, J., and Lisanti, M. P. (1996a). Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271, 29182–29190.PubMedCrossRefGoogle Scholar
  37. Li, S., Okamoto, T., Chun, M., Sargiacomo, M., Casanova, J. E., Hansen, S. H., Nishimoto, I., and Lisanti, M. P. (1995). Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270, 15693–15701.PubMedCrossRefGoogle Scholar
  38. Li, S., Seitz, R., and Lisanti, M. P. (1996b). Phosphorylation of caveolin by Src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J. Biol. Chem. 271, 3863–3868.PubMedCrossRefGoogle Scholar
  39. Lisanti, M. P., Scherer, P. E., Vidugiriene, J., Tang, Z., Hermanowski-Vosatka, A., Tu, Y. H., Cook, R. F., and Sargiacomo, M. (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: Implications for human disease. J. Cell Biol. 126, 111–126.PubMedCrossRefGoogle Scholar
  40. Liu, P., Wang, P., Michaely, P., Zhu, M., and Anderson, R. G. (2000). Presence of oxidized cholesterol in caveolae uncouples active platelet-derived growth factor receptors from tyrosine kinase substrates. J. Biol. Chem. 275, 31648–31654.PubMedCrossRefGoogle Scholar
  41. Lizard, G., Gueldry, S., Sordet, O., Monier, S., Athias, A., Miguet, C., Bessede, G., Lemaire, S., Solary, E., and Gambert, P. (1998). Glutathione is implied in the control of 7-ketocholesterolinduced apoptosis, which is associated with radical oxygen species production. FASEB J. 12, 1651–1663.PubMedGoogle Scholar
  42. Mastick, C. C., Brady, M. J., and Saltiel, A. R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129, 1523–1531.PubMedCrossRefGoogle Scholar
  43. Michel, J. B., Feron, O., Sacks, D., and Michel, T. (1997). Reciprocal regulation of endothelial nitric-oxide synthase by Cat+-calmodulin and caveolin. J. Biol. Chem. 272, 15583–15586.PubMedCrossRefGoogle Scholar
  44. Michel, T. (1999). Targeting and translocation of endothelial nitric oxide synthase. Braz. J. Med. Biol. Res. 32, 1361–1366.PubMedCrossRefGoogle Scholar
  45. Mineo, C., and Anderson, R. G. (2001). Potocytosis. Histochem. Cell Biol. 116, 109–118.Google Scholar
  46. Murata, M., Peranen, J., Schreiner, R., Wieland, E, Kurzchalia, T. V., and Simons, K.(1995) VIP21/caveolin is a cholesterol-binding protein. Proc. Natl. Acad. Sci. U.S.A. 92,10339–10343.PubMedCrossRefGoogle Scholar
  47. Myers, S. J., and Stanley, K. K. (1999). Src family kinase activation in glycosphingolipidrich membrane domains of endothelial cells treated with oxidised low density lipoprotein. Atherosclerosis 143, 389–397.PubMedCrossRefGoogle Scholar
  48. Nomura, R., and Fujimoto, T. (1999). Tyrosine-phosphorylated caveolin-1: Immunolocalization and molecular characterization. Mol. Biol. Cell 10, 975–986.PubMedGoogle Scholar
  49. Norkin, L. C. (2001). Caveolae in the uptake and targeting of infectious agents and secreted toxins. Adv. Drug Deliv. Rev. 49, 301–315.Google Scholar
  50. Okamoto, Y., Ninomiya, H., Miwa, S., and Masaki, T. (2000). Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrincoated pits in chinese hamster ovary cells. J. Biol. Chem. 275, 6439–6446.PubMedCrossRefGoogle Scholar
  51. Parat, M. O., and Fox, P. L. (2001). Palmitoylation of caveolin-1 in endothelial cells is post-translational but irreversible. J. Biol. Chem. 276, 15776–15782.PubMedCrossRefGoogle Scholar
  52. Parat, M. O., Stachowicz, R. Z., and Fox, P. L. (2002). Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells. Biochem. J. 361, 681–688.PubMedCrossRefGoogle Scholar
  53. Peterson, T. E., Poppa, V, Ueba, H., Wu, A., Yan, C., and Berk, B. C. (1999). Opposing effects of reactive oxygen species and cholesterol on endothelial nitric oxide synthase and endothelial cell caveolae. Circ. Res. 85, 29–37.PubMedCrossRefGoogle Scholar
  54. Prabhakar, P., Thatte, H. S., Goetz, R. M., Cho, M. R., Golan, D. E., and Michel, T. (1998). Receptor-regulated translocation of endothelial nitric-oxide synthase. J. Biol. Chem. 273, 27383–27388.PubMedCrossRefGoogle Scholar
  55. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., and Anderson, R. G. (1992). Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682.PubMedCrossRefGoogle Scholar
  56. Samsonov, A. V, Mihalyov, I., and Cohen, F. S. (2001). Characterization of cholesterol-sphin-gomyelin domains and their dynamics in bilayer membranes. Biophys. J. 81,1486–1500.PubMedCrossRefGoogle Scholar
  57. Sanguinetti, A. R., and Mastick, C. C. (2003). c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell. Signal 15, 289–298.PubMedCrossRefGoogle Scholar
  58. Sargiacomo, M., Scherer, P. E., Tang, Z., Kubler, E., Song, K. S., Sanders, M. C., and Lisanti, M. P. (1995). Oligomeric structure of caveolin: Implications for caveolae membrane organization. Proc. Natl. Acad. Sci. U.S.A. 92, 9407–9411.PubMedCrossRefGoogle Scholar
  59. Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P., and Lisanti, M. P. (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable heterooligomeric complex in vivo. J. Biol. Chem. 272, 29337–29346.PubMedCrossRefGoogle Scholar
  60. Scherer, P. E., Tang, Z., Chun, M., Sargiacomo, M., Lodish, H. F., and Lisanti, M. P. (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J. Biol. Chem. 270, 16395–16401.PubMedCrossRefGoogle Scholar
  61. Schlegel, A., Aryan, E, and Lisanti, M. P. (2001). Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J. Biol. Chem. 276, 4398–4408.PubMedCrossRefGoogle Scholar
  62. Schlegel, A., Pestell, R. G., and Lisanti, M. P. (2000). Caveolins in cholesterol trafficking and signal transduction: Implications for human diseases. Front. Biosci. 5, D929–937.CrossRefGoogle Scholar
  63. Simionescu, M., Simionescu, N., and Palade, G. E. (1982). Biochemically differentiated microdomains of the cell surface of capillary endothelium. Ann. N.Y. Acad. Sci. 401, 9–24.PubMedCrossRefGoogle Scholar
  64. Smart, E. J., and Anderson, R. G. (2002). Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353, 131–139.PubMedCrossRefGoogle Scholar
  65. Smart, E. J., Graf, G. A., McNiven, M. A., Sessa, W. C., Engelman, J. A., Scherer, P. E., Okamoto, T., and Lisanti, M. P. (1999). Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19, 7289–7304.PubMedGoogle Scholar
  66. Smart, E. J., Ying Ys, Donzell, W. C., and Anderson, R. G. (1996). A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29427–29435.PubMedCrossRefGoogle Scholar
  67. Smart, E. J., Ying, Y. S., Conrad, P. A., and Anderson, R. G. (1994). Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation. J. Cell Biol. 127, 1185–1197.PubMedCrossRefGoogle Scholar
  68. Song, K. S., Tang, Z., Li, S., and Lisanti, M. P. (1997). Mutational analysis of the properties of caveolin-1. A novel role for the C-terminal domain in mediating homo-typic caveolincaveolin interactions. J. Biol. Chem. 272, 4398–4403.PubMedCrossRefGoogle Scholar
  69. Tang, Z., Scherer, P. E., Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I., Lodish, H. E, and Lisanti, M. P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255–2261.PubMedCrossRefGoogle Scholar
  70. Thannickal, V J., and Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005–1028.PubMedGoogle Scholar
  71. Thomsen, P., Roepstorff, K., Stahlhut, M., and van Deurs, B. (2002). Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250.PubMedCrossRefGoogle Scholar
  72. Uittenbogaard, A., Shaul, P. W, Yuhanna, I. S., Blair, A., and Smart, E. J. (2000). High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem. 275, 11278–11283.PubMedCrossRefGoogle Scholar
  73. Uittenbogaard, A., and Smart, E. J. (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J. Biol. Chem. 275, 25595–25599.PubMedCrossRefGoogle Scholar
  74. Uittenbogaard, A., Ying, Y, and Smart, E. J. (1998). Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J. Biol. Chem. 273, 6525–6532.PubMedCrossRefGoogle Scholar
  75. Vepa, S., Scribner, W. M., and Natarajan, V (1997). Activation of protein phosphorylation by oxidants in vascular endothelial cells: Identification of tyrosine phosphorylation of caveolin. Free Radic. Biol. Med. 22, 25–35.Google Scholar
  76. Volonte, D., Galbiati, E, Pestell, R. G., and Lisanti, M. P. (2001). Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem. 276, 8094–8103.PubMedCrossRefGoogle Scholar
  77. Volonte, D., Zhang, K., Lisanti, M. P, and Galbiati, F. (2002). Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol. Biol. Cell 13, 2502–2517.PubMedCrossRefGoogle Scholar
  78. Wang, X. Q., Sun, P., and Palier, A. S. (2002). Ganglioside induces caveolin-1 redistribution and interaction with the epidermal growth factor receptor. J. Biol. Chem. 277, 47028–47034.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Marie-Odile Parat
    • 1
  • Paul L. Fox
    • 1
  1. 1.Departments of Anesthesiology Research and Cell Biology, The Lerner Research InstituteCleveland Clinic FoundationClevelandUSA

Personalised recommendations