Skip to main content

Membrane Targeting in Secretion

  • Chapter
Membrane Dynamics and Domains

Part of the book series: Subcellular Biochemistry ((SCBI,volume 37))

Abstract

Regulated secretion and exocytosis require the selective packaging of regulated secretory proteins in secretory storage organelles and the controlled docking and fusion of these organelles with the plasma membrane. Secretory granule biogenesis involves sorting of secretory proteins and membrane components both at the level of the trans-Golgi network and the immature secretory granule. Sorting is thought to be mediated by selective protein aggregation and the interaction of these proteins with specific membrane domains. There is now considerable interest in the understanding of the complex lipid—protein and protein—protein interactions at the trans-Golgi network and the granule membrane. A role for lipid microdomains and associated sorting receptors in membrane targeting and granule formation is vividly discussed for (neuro)endocrine cells. In exocrine cells, however, little has been known of granule membrane composition and membrane protein function. With the cloning and characterization of granule membrane proteins and their interactions at the inner leaflet of zymogen granules of pancreatic acinar cells, it is now possible to elcuidate their function in membrane targeting and sorting of zymogens at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CgA,B:

chromogranin A, B

CPE:

carboxypeptidase E

CV:

condensing vacuole

GAG:

glucosaminoglycan

GP:

glycoprotein

GPI:

glycosylphosphatidylinositol

ISGs:

immature secretory granules

MĂźCD:

methyl-β-cyclodextrin

MSGs:

mature secretory granules

NSF:

N-ethyl-maleimide-sensitive factor

PC:

prohormone convertase

PI-PLC:

phosphatidylinositolspecific phospholipase C

POMC:

pro-opiomelanocortin

PRPs:

proline-rich proteins

RSPs:

regulated secretory proteins

SH3:

src homology 3 domain binding motif

SNAP:

soluble N-ethylmaleimide-sensitive factor attachment protein

SNAREs:

soluble N-ethyl-maleimide-sensitive factor attachment protei receptors

TGN:

trans-Golgi network

THP:

Tamm-Horsfall protein

ZGM:

zymogen granule membrane

References

  • Alfalah, M., Jacob, R., Preuss, U., Zimmer, K. E, Naim, H. and Naim, H. Y. (1999). 0-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr Biol 9, 593–6.

    Article  PubMed  CAS  Google Scholar 

  • An, S. J., Hansen, N. J., Hodel, A., Jahn, R. and Edwardson, J. M. (2000). Analysis of the association of syncollin with the membrane of the pancreatic zymogen granule. J Biol Chem 275, 11306–11.

    Article  PubMed  CAS  Google Scholar 

  • Antonin, W, Wagner, M., Riedel, D., Brose, N. and Jahn, R. (2002). Loss of the zymogen granule protein syncollin affects pancreatic protein synthesis and transport but not secretion. Mol Cell Biol 22, 1545–54.

    Article  PubMed  CAS  Google Scholar 

  • Aryan, P. and Castle, D. (1992). Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biology 2, 327–31.

    Article  Google Scholar 

  • Aryan, P. and Castle, D. (1998). Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem J 332, 593–610.

    Google Scholar 

  • Aryan, P., Kuliawat, R., Prabakaran, D., Zavacki, A. M., Elahi, D., Wang, S. and Pilkey, D. (1991). Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J Biol Chem 266, 14171–4.

    Google Scholar 

  • Beaudoin, A. R., St-Jean, P. and Grondin, G. (1991). Ultrastructural localization of GP2 in acinar cells of pancreas: presence of GP2 in endocytic and exocytic compartments. J Histochem Cytochem 39, 575–88.

    Article  PubMed  CAS  Google Scholar 

  • Berg, N. B. and Young, R. W. (1971). Sulfate metabolism in pancreatic acinar cells. J Cell Biol 50, 469–83.

    Article  PubMed  CAS  Google Scholar 

  • Blair, E. A., Castle, A. M. and Castle, J. D. (1991). Proteoglycan sulfation and storage parallels storage of basic secretory proteins in exocrine cells. Am J Physiol 261, C897–905.

    PubMed  CAS  Google Scholar 

  • Blazquez, M., Thiele, C., Huttner, W. B., Docherty, K. and Shennan, K. I. (2000). Involvement of the membrane lipid bilayer in sorting prohormone convertase 2 into the regulated secretory pathway. Biochem J 349, 843–52.

    PubMed  CAS  Google Scholar 

  • Brand, S. H., Laurie, S. M., Mixon, M. B. and Castle, J. D. (1991). Secretory carrier membrane proteins 31–35 define a common protein composition among secretory carrier membranes. J Biol Chem 266, 18949–57.

    PubMed  CAS  Google Scholar 

  • Braun, M. and Thevenod, F. (2000). Photoaffinity labeling and purification of ZG-16p, a high-affinity dihydropyridine binding protein of rat pancreatic zymogen granule membranes that regulates a K(+)-selective conductance. Mol Pharmacol 57, 308–16.

    PubMed  CAS  Google Scholar 

  • Brion, C., Miller, S. G. and Moore, H. P. (1992). Regulated and constitutive secretion. Differential effects of protein synthesis arrest on transport of glycosaminoglycan chains to the two secretory pathways. J Biol Chem 267, 1477–83.

    PubMed  CAS  Google Scholar 

  • Brown, D. A. and Rose, J. K. (1992). Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–44.

    Article  PubMed  CAS  Google Scholar 

  • Cabana, C., Hugon, J. S. and Lamy, E (1981). Freeze-fracture and deep-etching studies on zymogen-granule membranes of the rat pancreas. Cell Tissue Res 214, 355–67.

    Article  PubMed  CAS  Google Scholar 

  • Castle, A. M. and Castle, J. D. (1993). Novel secretory proline-rich proteoglycans from rat parotid. Cloning and characterization by expression in AtT-20 cells. J Biol Chem 268, 20490–6.

    PubMed  CAS  Google Scholar 

  • Castle, A. M. and Castle, J. D. (1998a). Enhanced glycosylation and sulfation of secretory proteoglycans is coupled to the expression of a basic secretory protein. Mol Biol Cell 9, 575–83.

    PubMed  CAS  Google Scholar 

  • Castle, D. and Castle, A. (1998b). Intracellular transport and secretion of salivary proteins. Crit Rev Oral Biol Med 9, 4–22.

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain, L. H., Burgoyne, R. D. and Gould, G. W. (2001). SNARE proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98, 5619–24.

    Article  PubMed  CAS  Google Scholar 

  • Chanat, E. and Huttner, W. (1991). Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115, 1505–19.

    Article  PubMed  CAS  Google Scholar 

  • Chanat, E., Weiss, U., Huttner, W. and Tooze, S. (1993). Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. Embo 112, 2159–68.

    Google Scholar 

  • Chang, A. and Jamieson, J. D. (1986). Stimulus-secretion coupling in the developing exocrine pancreas: secretory responsiveness to cholecystokinin. J Cell Biol 103, 2353–65.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. Y., Cronshagen, U. and Kern, H. F. (1997). A novel pancreas-specific serpin (ZG-46p) localizes to the soluble and membrane fraction of the Golgi complex and the zymogen granules of acinar cells. Eur J Cell Biol 73, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Chuang, J. Z. and Sung, C. H. (1998). The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells. J Cell Biol 142, 1245–56.

    Article  PubMed  CAS  Google Scholar 

  • Colomer, V., Kicska, G. A. and Rindler, M. J. (1996). Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem 271, 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Colomer, V, Lal, K., Hoops, T. C. and Rindler, M. J. (1994). Exocrine granule specific packaging signals are present in the polypeptide moiety of the pancreatic granule membrane protein GP2 and in amylase: implications for protein targeting to secretory granules. Embo J 13, 3711–9.

    PubMed  CAS  Google Scholar 

  • Cool, D. R., Fenger, M., Snell, C. R. and Loh, Y. P. (1995). Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J Biol Chem 270, 8723–9.

    Article  PubMed  CAS  Google Scholar 

  • Cool, D. R., Normant, E., Shen, E S., Chen, H. C., Pannell, L., Zhang, Y. and Loh, Y. P. (1997). Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in CPE(fat) mice. Cell 88, 73–83.

    CAS  Google Scholar 

  • Creemers, J. W, Usac, E. F., Bright, N. A., Van de Loo, J. W, Jansen, E., Van de Ven, W. J. and Hutton, J. C. (1996). Identification of a transferable sorting domain for the regulated pathway in the prohormone convertase PC2. J Biol Chem 271, 25284–91.

    Article  PubMed  CAS  Google Scholar 

  • Cronshagen, U., Voland, P. and Kern, H. E (1994). cDNA cloning and characterization of a novel 16 kDa protein located in zymogen granules of rat pancreas and goblet cells of the gut. Eur J Cell Biol 65, 366–77.

    Google Scholar 

  • Dartsch, H., Kleene, R. and Kern, H. E (1998). In vitro condensation-sorting of enzyme proteins isolated from rat pancreatic acinar cells. Eur J Cell Biol 75, 211–22.

    Article  PubMed  CAS  Google Scholar 

  • Davis, A. E, Bai, J., Fasshauer, D., Wolowick, M. J., Lewis, J. L. and Chapman, E. R. (1999). Kinetics of synaptotagmin responses to Cat+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–76.

    Article  PubMed  CAS  Google Scholar 

  • De Bie, I., Marcinkiewicz, M., Malide, D., Lazure, C., Nakayama, K., Bendayan, M. and Seidah, N. G. (1996). The isoforms of proprotein convertase PC5 are sorted to different subcellular compartments. J Cell Biol 135, 1261–75.

    Article  PubMed  Google Scholar 

  • De Lisle, R. C. (1994). Characterization of the major sulfated protein of mouse pancreatic acinar cells: a high molecular weight peripheral membrane glycoprotein of zymogen granules. J Cell Biochem 56, 385–96.

    Article  PubMed  Google Scholar 

  • De Lisle, R. C. (2002). Role of sulfated 0-linked glycoproteins in zymogen granule formation. J Cell Sci 115, 2941–52.

    Google Scholar 

  • De Lisle, R. C. and Ziemer, D. (2000). Processing of pro-Muclin and divergent trafficking of its products to zymogen granules and the apical plasma membrane of pancreatic acinar cells. Eur J Cell Biol 79, 892–904.

    Article  PubMed  Google Scholar 

  • Dhanvantari, S., Arnaoutova, I., Snell, C. R., Steinbach, P. J., Hammond, K., Caputo, G. A., London, E. and Loh, Y. P. (2002). Carboxypeptidase E, a prohormone sorting receptor, is anchored to secretory granules via a C-terminal transmembrane insertion. Biochemistry 41, 52–60.

    Article  PubMed  CAS  Google Scholar 

  • Dhanvantari, S. and Loh, Y. P. (2000). Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. J Biol Chem 275, 29887–93.

    CAS  Google Scholar 

  • Disdier, M., Morrissey, J. H., Fugate, R. D., Bainton, D. E. and McEver, R. P. (1992). Cytoplasmic domain of P-selectin (CD62) contains the signal for sorting into the regulated secretory pathway. Mol Biol Cell 3, 309–21.

    PubMed  CAS  Google Scholar 

  • Dittie, A. and Kern, H. E (1992). The major zymogen granule membrane protein GP-2 in the rat pancreas is not involved in granule formation. Eur J Cell Biol 58, 243–58.

    PubMed  CAS  Google Scholar 

  • Eaton, B. A., Haugwitz, M., Lau, D. and Moore, H. P. (2000). Biogenesis of regulated exo-cytotic carriers in neuroendocrine cells. J Neurosci 20, 7334–44.

    PubMed  CAS  Google Scholar 

  • Edwardson, J. M., An, S. and Jahn, R. (1997). The secretory granule protein syncollin binds to syntaxin in a Ca2(+)- sensitive manner. Cell 90, 325–33.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler, K., Parton, R. G., Kellner, R., Etzold, T. and Simons, K. (1994). VIP36, a novel compo-nent of glycolipid rafts and exocytic carrier vesicles in epithelial cells. Embo J 13, 1729–40.

    PubMed  CAS  Google Scholar 

  • Fiedler, K. and Simons, K. (1995). The role of N-glycans in the secretory pathway. Cell 81, 309–12.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, E. and Kjellen, L. (2001). Heparan sulfate: lessons from knockout mice. J Clin Invest 108, 175–80.

    PubMed  CAS  Google Scholar 

  • Forsberg, E., Pejler, G., Ringvall, M., Lunderius, C., Tomasini-Johansson, B., KuscheGullberg, M., Eriksson, I., Ledin, J., Hellman, L. and Kjellen, L. (1999). Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–6.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, S. and Scheele, G. (1993a). Reversible pH-induced homophilic binding of GP2, a glycosyl-phosphatidylinositol-anchored protein in pancreatic zymogen granule membranes. Eur J Cell Biol 61, 229–38.

    PubMed  CAS  Google Scholar 

  • Freedman, S. D., Katz, M. H., Parker, E. M. and Gelrud, A. (1999). Endocytosis at the apical plasma membrane of pancreatic acinar cells is regulated by tyrosine kinases. Am J Physiol 276, C306–11.

    PubMed  CAS  Google Scholar 

  • Freedman, S. D., Kern, H. E and Scheele, G. A. (1998a). Acinar lumen pH regulates endocytosis, but not exocytosis, at the apical plasma membrane of pancreatic acinar cells. Eur J Cell Biol 75, 153–62.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, S. D., Kern, H. E. and Scheele, G. A. (1998b). Cleavage of GPI-anchored proteins from the plasma membrane activates apical endocytosis in pancreatic acinar cells. Eur J Cell Biol 75, 163–73.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, S. D. and Scheele, G. A. (1993b). Regulated secretory proteins in the exocrine pancreas aggregate under conditions that mimic the trans-Golgi network. Biochem. Biophys Res Commun 197, 992–9.

    Google Scholar 

  • Freedman, S. D. and Scheele, G. A. (1994). Acid-base interactions during exocrine pancreatic secretion. Primary role for ductal bicarbonate in acinar lumen function. Ann NYAcad Sci 713, 199–206.

    Google Scholar 

  • Fricker, L. D., Das, B. and Angeletti, R. H. (1990). Identification of the pH-dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10). J Biol Chem 265, 2476–82.

    CAS  Google Scholar 

  • Fukuoka, S., Freedman, S. D. and Scheele, G. A. (1991). A single gene encodes membrane-bound and free forms of GP-2, the major glycoprotein in pancreatic secretory (zymogen) granule membranes. Proc NatlAcad Sci USA 88, 2898–902.

    Article  CAS  Google Scholar 

  • Fukuoka, S., Freedman, S. D., Yu, H., Sukhatme, V. P. and Scheele, G. A. (1992). GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney. Proc Natl Acad Sci USA 89, 1189–93.

    Article  PubMed  CAS  Google Scholar 

  • Gaisano, H. Y., Ghai, M., Malkus, P. N., Sheu, L., Bouquillon, A., Bennett, M. K. and Trimble, W. S. (1996a). Distinct cellular locations of the syntaxin family of proteins in rat pancreatic acinar cells. Mol Biol Cell 7, 2019–27.

    PubMed  CAS  Google Scholar 

  • Gaisano, H. Y., Sheu, L., Foskett, J. K. and Trimble, W. S. (1994). Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem 269, 17062–6.

    CAS  Google Scholar 

  • Gaisano, H. Y., Sheu, L., Grondin, G., Ghai, M., Bouquillon, A., Lowe, A., Beaudoin, A. and Trimble, W. S. (1996b). The vesicle-associated membrane protein family of proteins in rat pancreatic and parotid acinar cells. Gastroenterology 111, 1661–9.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, J. T. (1989). The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol 1, 1201–18.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, J. T., Lyon, M. and Steward, W P. (1986). Structure and function of heparan sulphate proteoglycans. Biochem J 236, 313–25.

    CAS  Google Scholar 

  • Geisse, N. A., Wasle, B., Saslowsky, D. E., Henderson, R. M. and Edwardson, J. M. (2002). Syncollìn homo-oligomers associate with lipid bilayers in the form of doughnut-shaped structures. J Membr Bio1 189, 83–92.

    Google Scholar 

  • Gerona, R. R., Larsen, E. C., Kowalchyk, J. A. and Martin, T. F. (2000). The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 275, 6328–36.

    Article  CAS  Google Scholar 

  • Glombik, M. M. and Gerdes, H. H. (2000). Signal-mediated sorting of neuropeptides and prohormones: secretory granule biogenesis revisited. Biochimie 82, 315–26.

    Article  PubMed  CAS  Google Scholar 

  • Glombik, M. M., Kromer, A., Salm, T., Huttner, W. B. and Gerdes, H. H. (1999). The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. Embo 118, 1059–70.

    Google Scholar 

  • Goncz, K. K. and Rothman, S. S. (1992). Protein flux across the membrane of single secretion granules. Biochim BiophysActa 1109, 7–16.

    Google Scholar 

  • Goncz, K. K. and Rothman, S. S. (1995). A trans-membrane pore can account for protein movement across zymogen granule membranes. Biochim BiophysActa 1238, 91–3.

    Google Scholar 

  • Grimes, M. and Kelly, R. B. (1992). Intermediates in the constitutive and regulated secretory pathways released in vitro from semi-intact cells. J Cell Bio1 117, 539–49.

    Google Scholar 

  • Grondin, G., St-Jean, P. and Beaudoin, A. R. (1992). Cytochemical and immunocytochemical characterization of a fibrillar network (GP2) in pancreatic juice: possible role as a sieve in the pancreatic ductal system. Eur J Cell Biol 57, 155–64.

    PubMed  CAS  Google Scholar 

  • Hansen, L. J., Reddy, M.K., Reddy, J.K. (1983). Comparison of secretory protein and membrane composition of secretory granules isolated from normal and neoplastic pancreatic acinar cells of rats. Proc NatlAcad Sci USA 80, 4379–83.

    Article  CAS  Google Scholar 

  • Hansen, N. J., Antonin, W. and Edwardson, J. M. (1999). Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem 274, 22871–6.

    Article  PubMed  CAS  Google Scholar 

  • Harder, T. and Simons, K. (1997). Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9, 534–42.

    Article  PubMed  CAS  Google Scholar 

  • Hodel, A., An, S. J., Hansen, N. J., Lawrence, J., Wasle, B., Schrader, M. and Edwardson, J. M. (2001). Cholesterol-dependent interaction of syncollin with the membrane of the pancreatic zymogen granule. Biochem J 356, 843–50.

    Article  CAS  Google Scholar 

  • Hodel, A. and Edwardson, J. M. (2000). Targeting of the zymogen-granule protein syncollin in AR42J and AtT-20 cells. Biochem J 350, 637–43.

    Article  PubMed  CAS  Google Scholar 

  • Holmskov, U., Lawson, E, Teisner, B., Tornoe, I., Willis, A. C., Morgan, C., Koch, C. and Reid, K. B. (1997). Isolation and characterization of a new member of the scavenger receptor superfamily, glycoprotein-340 (gp-340), as a lung surfactant protein-D binding molecule. J Biol Chem 272, 13743–9.

    Article  CAS  Google Scholar 

  • Hoops, T. C., Ivanov, I., Cui, Z., Colomer-Gould, V and Rindler, M. J. (1993). Incorporation of the pancreatic membrane protein GP-2 into secretory granules in exocrine but not endocrine cells. J Biol Chem 268, 25694–705.

    CAS  Google Scholar 

  • Hoops, T. C. and Rindler, M. J. (1991). Isolation of the cDNA encoding glycoprotein-2 (GP-2), the major zymogen granule membrane protein. Homology to uromodulin/TammHorsfall protein. J Biol Chem 266, 4257–63.

    Google Scholar 

  • Huang, C., Sali, A. and Stevens, R. L. (1998). Regulation and function of mast cell proteases in inflammation. J Clin Immunol 18, 169–83.

    Article  CAS  Google Scholar 

  • Humphries, D. E., Wong, G. W, Friend, D. S., Gurish, M. E, Qiu, W. T., Huang, C., Sharpe, A. H. and Stevens, R. L. (1999a). Heparin is essential for the storage of specific granule pro-teases in mast cells. Nature 400, 769–72.

    Article  PubMed  CAS  Google Scholar 

  • Humphries, D. E., Wong, G. W, Friend, D. S., Gurish, M. E. and Stevens, R. L. (1999b). 14 Heparin-null Transgenic Mice are Unable to Store Certain Granule Proteases in Their Mast Cells. J Histochem Cytochem 47, 1645D - 1646.

    Google Scholar 

  • Huttner, W. B., Gerdes, H. H. and Rosa, P. (1991). The granin (chromogranmlsecretogranin) family. Trends Biochem Sci 126, 27–30.

    Article  Google Scholar 

  • Huttner, W. B. and Natori, S. (1995). Regulated secretion. Helper proteins for neuroendocrine secretion. Curr Biol 5, 242–5.

    Article  PubMed  CAS  Google Scholar 

  • Huttner, W. B. and Zimmerberg, J. (2001). Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13, 478–84.

    Article  PubMed  CAS  Google Scholar 

  • Ikonen, E. (2001). Roles of lipid rafts in membrane transport. Curr Opin Cell Biol 13, 470–7.

    Article  PubMed  CAS  Google Scholar 

  • Ikonen, E. and Simons, K. (1998). Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol 9, 503–9.

    Article  PubMed  CAS  Google Scholar 

  • Imai, A., Nashida, T. and Shimomura, H. (2001). mRNA expression of membrane-fusionrelated proteins in rat parotid gland. Arch Oral Biol 46, 955–62.

    Google Scholar 

  • Irminger, J. C., Verchere, C. B., Meyer, K. and Halban, P. A. (1997). Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E-deficient Cpefat/Cpefat mice. J Biol Chem 272, 27532–4.

    Article  PubMed  CAS  Google Scholar 

  • Iwanij, V. and Jamieson, J. D. (1982). Biochemical analysis of secretory proteins synthesized by normal rat pancreas and by pancreatic acinar tumor cells. J Cell Biol 95, 734–41.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, M., Laine, J. and LeBel, D. (1992). Specific interactions of pancreatic amylase at acidic pH. Amylase and the major protein of the zymogen granule membrane (GP-2) bind to immobilized or polymerized amylase. Biochem Cell Biol 70, 1105–14.

    Article  PubMed  CAS  Google Scholar 

  • Jahn, R. and Sudhof, T. C. (1999). Membrane fusion and exocytosis. Annu Rev Biochem 68, 863–911.

    Article  PubMed  CAS  Google Scholar 

  • Kalus, I., Hodel, A., Koch, A., Kleene, R., Michael Edwardson, J. and Schrader, M. (2002). Interaction of syncollin with GP-2, the major membrane protein of pancreatic zymogen granules, and association with lipid microdomains. Biochem J 362, 433–42.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T., Tao-Cheng, J. H., Eiden, L. E. and Loh, Y. P. (2001). Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106, 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Kleene, R., Classen, B., Zdzieblo, J. and Schrader, M. (2000). SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas. Biochemistry 39, 9893–900.

    Article  PubMed  CAS  Google Scholar 

  • Kleene, R., Dartsch, H. and Kern, H. E (1999a). The secretory lectin ZG16p mediates sorting of enzyme proteins to the zymogen granule membrane in pancreatic acinar cells. European Journal of Cell Biology 78, 79–90.

    Article  PubMed  CAS  Google Scholar 

  • Kleene, R., Kastner, B., Rosser, R. and Kern, H. (1999b). Complex formation among rat pancreatic secretory proteins under mild alkaline pH conditions. Digestion 60, 305–13.

    Article  PubMed  CAS  Google Scholar 

  • Kleene, R., Zdzieblo, J., Wege, K. and Kern, H. E (1999c). A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. J Cell Sci 112, 2539–48.

    PubMed  CAS  Google Scholar 

  • Klumperman, J., Kuliawat, R., Griffith, J. M., Geuze, H. J. and Aryan, P. (1998). Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 141, 359–71.

    Article  PubMed  CAS  Google Scholar 

  • Koedam, J. A., Cramer, E. M., Briend, E., Furie, B., Furie, B. C. and Wagner, D. D. (1992). P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells. J Cell Biol 116, 617–25.

    Article  PubMed  CAS  Google Scholar 

  • Kolhekar, A. S., Mains, R. E. and Eipper, B. A. (1997). Peptidylglycine alpha-amidating monooxygenase: an ascorbate-requiring enzyme. Methods Enzymol 279, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Kolset, S. O. and Gallagher, J. T. (1990). Proteoglycans in haemopoietic cells. Biochim Biophys Acta 1032, 191–211.

    Google Scholar 

  • Kraemer, J., Schmitz, E and Drenckhahn, D. (1999). Cytoplasmic dynein and dynactin as likely candidates for microtubule-dependent apical targeting of pancreatic zymogen granules. Eur J Cell Biol 78, 265–77.

    Article  PubMed  CAS  Google Scholar 

  • Krämer, A., Glombik, M. M., Buttner, W. B. and Gerdes, H. H. (1998). Essential role of the disulfide-bonded loop of chromogranin B for sorting to secretory granules is revealed by expression of a deletion mutant in the absence of endogenous granin synthesis. J Cell Biol 140, 1331–46.

    Article  Google Scholar 

  • Kundu, A., Avalos, R. T., Sanderson, C. M. and Nayak, D. P. (1996). Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol 70, 6508–15.

    Google Scholar 

  • Laine, J., Pelletier, G., Grondin, G., Peng, M. and LeBel, D. (1996). Development of GP-2 and five zymogens in the fetal and young pig: biochemical and immunocytochemical evidence of an atypical zymogen granule composition in the fetus. J Histochem Cytochem 44, 481–99.

    Article  PubMed  CAS  Google Scholar 

  • Lang, T., Bruns, D., Wenzel, D., Riedel, D., Holroyd, P., Thiele, C. and Jahn, R. (2001). SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. Embo 120, 2202–13.

    Google Scholar 

  • LeBel, D. and Beattie, M. (1988). The major protein of pancreatic zymogen granule membranes (GP-2) is anchored via covalent bonds to phosphatidylinositol. Biochem Biophys Res Commun 154, 818–23.

    Article  PubMed  CAS  Google Scholar 

  • Leblond, E A., Viau, G., Laine, J. and Lebel, D. (1993). Reconstitution in vitro of the pH-dependent aggregation of pancreatic zymogens en route to the secretory granule: implication of GP-2. Biochem J 291, 289–96.

    PubMed  CAS  Google Scholar 

  • Li, X. J. and Snyder, S. H. (1995). Molecular cloning of Ebnerin, a von Ebner’s gland protein associated with taste buds. J Biol Chem 270, 17674–9.

    Article  CAS  Google Scholar 

  • Lin, R. C. and Scheller, R. H. (2000). Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dey Biol 16, 19–49.

    Article  CAS  Google Scholar 

  • Lin, S., Naim, H. Y., Rodriguez, A. C. and Roth, M. G. (1998). Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J Cell Biol 142, 51–7.

    Article  PubMed  CAS  Google Scholar 

  • Logsdon, C. D., Moessner, J., Williams, J A and Goldfine, I. D. (1985). Glucocorticoids increase amylase mRNA levels, secretory organelles, and secretion in pancreatic acinar AR42J cells. J Cell Biol 100, 1200–8.

    Article  PubMed  CAS  Google Scholar 

  • Lutzelschwab, C., Pejler, G., Aveskogh, M. and Hellman, L. (1997). Secretory granule pro-teases in rat mast cells. Cloning of 10 different serine proteases and a carboxypeptidase A from various rat mast cell populations. J Exp Med 185, 13–29.

    Article  PubMed  CAS  Google Scholar 

  • Madore, N., Smith, K. L., Graham, C. H., Jen, A., Brady, K., Hall, S. and Morris, R. (1999). Functionally different GPI proteins are organized in different domains on the neuronal surface. Embo J 18, 6917–26.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Belmonte, F., Alonso, M. A., Zhang, X. and Aryan, P. (2000). Thyroglobulin is selected as luminal protein cargo for apical transport via detergent-resistant membranes in epithelial cells. J Biol Chem 275, 41074–81.

    Article  CAS  Google Scholar 

  • Matsumoto, R., Sali, A., Ghildyal, N., Karplus, M. and Stevens, R. L. (1995). Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem 270, 19524–31.

    Article  CAS  Google Scholar 

  • Meldolesi, J., Jamieson, J. D. and Palade, G. E. (1971). Composition of cellular membranes in the pancreas of the guinea pig. II. Lipids. J Cell Biol 49, 130–49.

    Google Scholar 

  • Milgram, S. L., Kho, S. T., Martin, G. V., Mains, R. E. and Eipper, B. A. (1997). Localization of integral membrane peptidylglycine alpha-amidating monooxygenase in neuroendocrine cells. J Cell Sci 110, 695–706.

    PubMed  CAS  Google Scholar 

  • Mitra, A., Song, L. and Fricker, L. D. (1994). The C-terminal region of carboxypeptidase E is involved in membrane binding and intracellular routing in AtT-20 cells. J Biol Chem 269, 19876–81.

    CAS  Google Scholar 

  • Normant, E. and Loh, Y. P. (1998). Depletion of carboxypeptidase E, a regulated secretory pathway sorting receptor, causes misrouting and constitutive secretion of proinsulin and proenkephalin, but not chromogranin A. Endocrinology 139, 2137–45.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, H., Ernst, S. A., Wys, N., McNiven, M. and Williams, J. A. (1996). Rab3D localizes to zymogen granules in rat pancreatic acini and other exocrine glands. Am J Physiol 271, G531–8.

    CAS  Google Scholar 

  • Ohnishi, H., Mine, T., Shibata, H., Ueda, N., Tsuchida, T. and Fujita, T. (1999). Involvement of Rab4 in regulated exocytosis of rat pancreatic acini. Gastroenterology 116, 943–52.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, H. and Takata, K. (1995). The granin family — its role in sorting and secretory granule formation. Cell Struct Funct 20, 415–20.

    Article  PubMed  CAS  Google Scholar 

  • Palade, G. E. (1975). Intracellular aspects in the process of protein secretion. Science 189, 347–58.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, D. J. and Christie, D. L. (1992). Identification of molecular aggregates containing glycoproteins III, J, K (carboxypeptidase H), and H (Kex2-related proteases) in the soluble and membrane fractions of adrenal medullary chromaffin granules. J Biol Chem 267, 19806–12.

    CAS  Google Scholar 

  • Parker, E. M., Zaman, M. M. and Freedman, S. D. (2000). GP2, a GPI-anchored protein in the apical plasma membrane of the pancreatic acinar cell, co-immunoprecipitates with src kinases and caveolin. Pancreas 21, 219–25.

    Article  PubMed  CAS  Google Scholar 

  • Pimplikar, S. W. and Huttner, W. B. (1992). Chromogranin B (secretogranin I), a secretory protein of the regulated pathway, is also present in a tightly membrane-associated form in PC12 cells. J Biol Chem 267, 4110–8.

    CAS  Google Scholar 

  • Prydz, K. and Dalen, K. T. (2000). Synthesis and sorting of proteoglycans. J Cell Sci 113, 193–205.

    PubMed  CAS  Google Scholar 

  • Reggio, H. A. and Palade, G. E. (1978). Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol 77, 288–314.

    Article  PubMed  CAS  Google Scholar 

  • Riedel, D., Antonin, W, Fernandez-Chacon, R., Alvarez de Toledo, G., Jo, T., Geppert, M., Valentijn, J. A., Valentijn, K., Jamieson, J. D., Sudhof, T. C. et al. (2002). Rab3D is not required for exocrine exocytosis but for maintenance of normally sized secretory granules. Mol Cell Biol 22, 6487–97.

    Article  PubMed  CAS  Google Scholar 

  • Rindler, M. J. (1998). Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem 273, 31180–5.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, W, Crise, B. and Rose, J. K. (1994). Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 14, 5384–91.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E. and Gonzalez, A. (1999). Glycans in post-Golgi apical targeting: sorting signals or structural props? Trends Cell Biol 9, 291–4.

    Article  PubMed  CAS  Google Scholar 

  • Ronzio, R. A., Kornquist, K. E., Douglas, S. L., MacDonald, R. J., Mohrlock, S. H. and O’Donell, J. J. (1978). Glycoprotein synthesis in the adult rat pancreas. IV. Subcellular distribution of membrane glycoproteins. Biochim BiophysActa 508, 65–84.

    Google Scholar 

  • Röper, K., Corbeil, D. and Huttner, W. B. (2000). Retention of protuinin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2, 582–92.

    Article  PubMed  Google Scholar 

  • Rudolf, R., Salm, T., Rustom, A. and Gerdes, H. H. (2001). Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actindependent tethering. Mol Biol Cell 12, 1353–65.

    PubMed  CAS  Google Scholar 

  • Sargiacomo, M., Sudol, M., Tang, Z. and Lisanti, M. P. (1993). Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 122, 789–807.

    Article  PubMed  CAS  Google Scholar 

  • Scheele, G. and Kern, H. E. (1993). Cellular compartmentation, protein processing, and secretion in the exocrine pancreas. In The pancreas: biology, pathobiology and disease, (ed. V. L. W. Go ), pp. 121–150. New York: Raven Press.

    Google Scholar 

  • Scheele, G. A., Fukuoka, S. and Freedman, S. D. (1994). Role of the GP2/THP family of GPI-anchored proteins in membrane trafficking during regulated exocrine secretion. Pancreas 9, 139–49.

    Article  PubMed  CAS  Google Scholar 

  • Scheele, G. A., Palade, G. E. and Tartakoff, A. M. (1978). Cell fractionation studies on the guinea pig pancreas. Redistribution of exocrine proteins during tissue homogenization. J Cell Biol 78, 110–30.

    Google Scholar 

  • Schmidt, K., Dartsch, H., Linder, D., Kern, H. and Kleene, R. (2000). A submembranous matrix of proteoglycans on zymogen granule membranes is involved in granule formation in rat pancreatic acinar cells. J Cell Sci 113, 2233–42.

    PubMed  CAS  Google Scholar 

  • Schmidt, K., Schrader, M., Kern, H. E and Kleene, R. (2001). Regulated apical secretion of zymogens in rat pancreas: Involvement of the GPI-anchored glycoprotein GP-2, the lectin ZG16p and cholesterol-glycosphingolipid enriched microdomains. J Biol Chem 10, 10.

    Google Scholar 

  • Scranton, T. W, Iwata, M. and Carlson, S. S. (1993). The SV2 protein of synaptic vesicles is a keratan sulfate proteoglycan. J Neurochem 61, 29–44.

    Article  CAS  Google Scholar 

  • Simons, K. and Ikonen, E. (1997). Functional rafts in cell membranes. Nature 387, 569–72.

    Article  PubMed  CAS  Google Scholar 

  • Stefanova, I., Horejsi, V, Ansotegui, I. J., Knapp, W. and Stockinger, H. (1991). GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 254, 1016–9.

    Article  PubMed  CAS  Google Scholar 

  • Stoller, T. J. and Shields, D. (1989). The propeptide of preprosomatostalin mediates intracellular transport and secretion of alpha-globin from mammalian cells. J Cell Bio1 108, 1647–55.

    Google Scholar 

  • Sun, A. Q., Ananthanarayanan, M., Soroka, C. J., Thevananther, S., Shneider, B. L. and Suchy, F. J. (1998). Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am J Physiol 275, G1045–55.

    CAS  Google Scholar 

  • Tan, S. and Hooi, S. C. (2000). Syncollin is differentially expressed in rat proximal small intestine and regulated by feeding behavior. Am J Physiol Gastrointest Liver Physiol 278, G308–20.

    CAS  Google Scholar 

  • Tartakoff, A. M., Jamieson, J. D., Scheele, G. A. and Palade, G. E. (1975). Studies on the pancreas of the guinea pig. Parallel processing and discharge of exocrine proteins. J Biol Chem 250, 2671–7.

    Google Scholar 

  • Thevenod, E (2002). Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am JPhysiol Cell Physiol 283, C651–72.

    CAS  Google Scholar 

  • Thiele, C., Gerdes, H. H. and Huttner, W B. (1997). Protein secretion: pn77ling receptors. Curr Biol 7, R496–500.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, C. and Huttner, W. B. (1998a). The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J Biol Chem 273, 1223–31.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, C. and Huttner, W. B. (1998b). Protein and lipid sorting from the trans-Golgi network to secretory granules-recent developments. Semin Cell Dey Biol 9, 511–6.

    Article  CAS  Google Scholar 

  • Tooze, J., Kern, H. F., Fuller, S. D. and Howell, K. E. (1989). Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol 109, 35–50.

    Article  PubMed  CAS  Google Scholar 

  • Tooze, S. A. (1998). Biogenesis of secretory granules in the trans-Golgi network of neuroen-docrine and endocrine cells. Biochim BiophysActa 1404, 231–44.

    Google Scholar 

  • Tooze, S. A., Martens, G. J. M. and Huttner, W B. (2001). Secretory granule biogenesis: rafting to the SNARE. Trends in Cell Biology 11, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, N., Ohnishi, H., Kanamaru, C., Suzuki, J., Tsuchida, T., Mashima, H., Yasuda, H. and Fujita, T. (2000). Kinesin is involved in regulation of rat pancreatic amylase secretion. Gastroenterology 119, 1123–31.

    Article  PubMed  CAS  Google Scholar 

  • Valentijn, J. A., Valentijn, K., Pastore, L. M. and Jamieson, J. D. (2000). Actin coating of secretory granules during regulated exocytosis correlates with the release of rab3D. Proc Natl Acad Sci USA 97, 1091–5.

    Article  PubMed  CAS  Google Scholar 

  • Varlamov, O., Fricker, L. D., Furukawa, H., Steiner, D. E, Langley, S. H. and Leiter, E. H. (1997). Beta-cell lines derived from transgenic Cpe(fat)/Cpe(fat) mice are defective in carboxypeptidase E and proinsulin processing. Endocrinology 138, 4883–92.

    Article  CAS  Google Scholar 

  • Wagner, A. C., Strowski, M. Z. and Williams, J. A. (1994). Identification of Rab 5 but not Rab 3A in rat pancreatic zymogen granule membranes. Biochem Biophys Res Commun 200, 542–8.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. C. and Williams, J. A. (1994). Pancreatic zymogen granule membrane proteins: molecular details begin to emerge. Digestion 55, 191–9.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y, Thiele, C. and Huttner, W. B. (2000). Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network. Traffic 1, 952–62.

    Article  PubMed  CAS  Google Scholar 

  • Wasmeier, C., Bright, N. A. and Hutton, J. C. (2002). The lumenal domain of the integral membrane protein phogrin mediates targeting to secretory granules. Traffic 3, 654–65.

    Article  PubMed  CAS  Google Scholar 

  • Wendler, E, Page, L., Urbe, S. and Tooze, S. A. (2001). Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 12, 1699–709.

    PubMed  CAS  Google Scholar 

  • Williams, J. A. (2001). Intracellular signaling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 63, 77–97.

    Article  PubMed  CAS  Google Scholar 

  • Yoo, S. H. (1993). pH-dependent binding of chromogranin B and secretory vesicle matrix proteins to the vesicle membrane. Biochim Biophys Acta 1179, 239–46.

    Google Scholar 

  • Yoo, S. H. (1995). pH- and Ca(2+)-induced conformational change and aggregation of chromogranin B. Comparison with chromogranin A and implication in secretory vesicle biogenesis. J Biol Chem 270, 12578–83.

    Google Scholar 

  • Yoo, S. H. and Albanesi, J. P. (1990). Ca2(+)-induced conformational change and aggregation of chromogranin A. J Biol Chem 265, 14414–21.

    PubMed  CAS  Google Scholar 

  • Zhang, C. E, Dhanvantari, S., Lou, H. and Loh, Y. P. (2003). Sorting of carboxypeptidase E to the regulated secretory pathway requires interaction of its transmembrane domain with lipid rafts. Biochem J 369, 453–60.

    CAS  Google Scholar 

  • Zhang, C. E, Snell, C. R. and Loh, Y. P. (1999). Identification of a novel prohormone sorting signal-binding site on carboxypeptidase E, a regulated secretory pathway-sorting receptor. Mol Endocrinol 13, 527–36.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, A., Webb, G., Zhu, X. and Steiner, D. E (1999). Proteolytic processing in the secretory pathway. J Biol Chem 274, 20745–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schrader, M. (2004). Membrane Targeting in Secretion. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics