Phospholipid Metabolism in Lung Surfactant

  • Ruud Veldhuizen
  • Fred Possmayer
Part of the Subcellular Biochemistry book series (SCBI, volume 37)


Pulmonary surfactant is a mixture of lipids, mostly phospholipids, and proteins that allows for breathing with minimal effort. The current chapter discusses the metabolism of the phospholipids of this material. Surfactant phospholipids are synthesized in the type II epithelial cells of the lung. The lipids and surfactant proteins are assembled in intracellular storage organelles, called lamellar bodies, and are subsequently secreted into the alveolar space. Within this extracellular space surfactant undergoes several transformations. First the lamellar bodies unravel to form a highly organized lattice-like lipid: protein structure tubular myelin. Second, the organized structures, in particular tubular myelin, adsorb to form a lipid at the air-liquid interface of the alveoli. It is, in fact, this surface tension reducing film that is responsible for the physiological role of surfactant, to prevent lung collapse and allow ease of inflation. Third, the surface film is converted to a small vesicular form. Finally, these small vesicles are taken-up by the type II cells for recycling and degradation and by alveolar macrophages for degradation.


Surfactant Protein Small Aggregate Lamellar Body Pulmonary Surfactant Phospholipid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arias-Diaz, J., Vara, E., Garcia, C., and Balibrea, J. L. 1994. Tumor Necrosis factor-alphainduced inhibition of phosphatidylcholine synthesis by human type 2 Pneumocytes is partially mediated by Prostaglandins. J. Clin. Invest. 94: 244–250.PubMedCrossRefGoogle Scholar
  2. Avery, M. E. and Mead, J. 1959. Surface properties in relation to atelectasis and hyaline membrane disease. Am..1 Dis. Child 97: 517–523.Google Scholar
  3. Avery, M. E. 2000. Surfactant deficiency in hyaline membrane disease: the story of discovery. Am. J Respir. Crit. Care Med. 161: 1074–1075PubMedCrossRefGoogle Scholar
  4. Bangham, A. D., Morley, C. J. and Phillips, M. C. 1979. The physical properties of an effective lung surfactant. Biochim. Biophys. Acta 573: 552–556.Google Scholar
  5. Baritussio, A., Bellina, L., Carraro, R., Rossi, A., Enzi, G., Magoon, M. W, and Mussini, I. 1984. Heterogeneity of alveolar surfactant in the rabbit. composition, morphology, and labelling of subfractions isolated by centrifugation of lung lavage. Eur. J Clin. Invest. 14: 24–29.PubMedCrossRefGoogle Scholar
  6. Barr, F., Clark, H., and Hawgood, S. 1998. Identification of a putative surfactant convertase in rat lung as a secreted serine carboxylesterase. Am. J. Physiol 274: (Pt 1): L404–10.PubMedGoogle Scholar
  7. Batenburg, J. J., den Breejen, J. N., Yost, R. W, Haagsman, H. P., and Van Golde, L. M. 1986. Glycerol 3-phosphate acylation in microsomes of type II cells isolated from adult rat lung. Biochim. Biophys. Acta 878: 301–309.PubMedCrossRefGoogle Scholar
  8. Batenburg, J. J. and Haagsman, H. P. 1998. The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog. Lipid Res. 37: 235–276.PubMedCrossRefGoogle Scholar
  9. Benson, B. J., Hawgood, S., and Williams, M. C. 1984. Role of apoprotein and calcium ions in surfactant function. Exp. Lung Res. 6: 223–236.PubMedCrossRefGoogle Scholar
  10. Bernhard, W, Postle, A. D., Rau, G. A., and Freihorst, J. 2001. Pulmonary and gastric surfactants. A comparison of the effect of surface requirements on function and phospholipid composition. Comp. Biochem. Physiol. A Mol. Integr.Physiol. 129: 173–182.PubMedCrossRefGoogle Scholar
  11. Botas, C., Poulain, F., Akiyama, J., Brown, C., Allen, L., Goerke, J., Clements, J., Carlson, E., Gillespie, A. M., Epstein, C., and Hawgood, S. 1998. Altered surfactant homeostasis and alveolar type II cell morphology in mice lacking surfactant protein d. Proc. Natl. Acad. Sci. USA 95: 11869–11874.PubMedCrossRefGoogle Scholar
  12. Brackenbury, A. M., Malloy, J. L., McCaig, L. A., Yao, L. J., Veldhuizen, R. A., and Lewis, J. F. 2002. Evaluation of alveolar surfactant aggregates in vitro and in vivo. Eur. Respir. J 19: 41–46.PubMedCrossRefGoogle Scholar
  13. Brower, R. G., Matthay, M. A., Morris, A., Schoenfeld, D., Thompson, B. T., and Wheeler, A. 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N. Engl. J. Med. 342: 1301–1308.CrossRefGoogle Scholar
  14. Chan, E, Harding, P. G. R., Wong, T., Fellows, G. E, and Possmayer, E 1983. Cellular distribution of enzymes involved in phosphatidylcholine synthesis in developing rat lung. Can. J. Biochem. 61: 107–114.CrossRefGoogle Scholar
  15. Chander, A. and Wu, R. D. 1991. In vitro fusion of lung lamellar bodies and plasma membrane is augmented by lung synexin. Biochim. Biophys. Acta 1086: 157–166.PubMedCrossRefGoogle Scholar
  16. Clements, J. A. 1957. Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med. 95: 170–172.PubMedGoogle Scholar
  17. Clements, J. A. 1977. Functions of the alveolar lining. Am. Rev. Resp. Dis. 115: 67–71.PubMedGoogle Scholar
  18. Cockshutt, A. M. and Possmayer, E 1992. Metabolism of surfactant lipids and proteins in developing lung. In Pulmonary Surfactant: from Molecular Biology to Clinical Practice ( Robertson, B., Van Golde, L. M. G., and Batenburg, J. J., eds.), Elsevier Science Publishers, Amsterdam, pp. 339–377.Google Scholar
  19. Cogo, P. E., Carnielli, V. P., Bunt, J. E., Badon, T., Giordano, G., Zacchello, E, Sauer, P. J., and Zimmermann, L. J. 1999. Endogenous surfactant metabolism in critically ill infants measured with stable isotope labeled fatty acids. Pediatr. Res. 45: 242–246.PubMedCrossRefGoogle Scholar
  20. Crouch, E. C. 1998. Structure, biologic properties, and expression of surfactant protein D (SP-D). Biochim. Biophys. Acta 1408: 278–289.PubMedCrossRefGoogle Scholar
  21. Dhand, R., Sharma, V. K., Teng, A. L., Krishnasamy, S., and Gross, N. J. 1998. Protein-lipid interactions and enzyme requirements for light subtype generation on cycling reconstituted surfactant. Biochem. Biophys. Res. Commun. 244: 712–719.PubMedCrossRefGoogle Scholar
  22. Doyle, I. R., Morton, S., Crockett, A. J., Barr, H. A., Davidson, K. G., Jones, M. J., Jones, M. E., and Nicholas, T. E. 2000. Composition of alveolar surfactant changes with training in humans. Respirology. 5: 211–220.PubMedCrossRefGoogle Scholar
  23. Dranoff, G., Crawford, A. D., Sadelain, M., Ream, B., Rashid, A., Bronson, R. T., Dickersin, G. R., Bachurski, C. J., Mark, E. L., and Whitsett, J. A. 1994. Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis. Science 264: 713–716.PubMedCrossRefGoogle Scholar
  24. Egberts, J., Beintema-Dubbeldam, A., and de Boers, A. 1987. Phosphatidylinositol and not phosphatidylglycerol is the important minor phospholipid in rhesus-monkey surfactant. Biochim.Biophys.Acta 919: 90–92.PubMedCrossRefGoogle Scholar
  25. Enhorning, G. 1977. Pulsating bubble technique for evaluating pulmonary surfactant. J. Appl. Physiol. 43: 198–203.PubMedGoogle Scholar
  26. Frerking, I., Gunther, A., Seeger, W, and Pison, U. 2001. Pulmonary surfactant: functions, abnormalities and therapeutic options. Intensive Care Med. 27: 1699–1717.PubMedCrossRefGoogle Scholar
  27. Froh, D., Ballard, P. L., Williams, M. C., Gonzales, J., Goerke, J., Odom, M. W, and Gonzales, L. W. 1990. Lamellar bodies of cultured human fetal lung: content of surfactant protein A (SP-A), surface film formation and structural transformation in vitro. Biochim. Biophys. Acta 1052: 78–89.PubMedCrossRefGoogle Scholar
  28. Goerke, J. 1998. Pulmonary surfactant: functions and molecular composition. Biochim. Biophys. Acta 1408: 79–89.PubMedCrossRefGoogle Scholar
  29. Griese, M. 1999. Pulmonary surfactant in health and human lung diseases: state of the art. Eur. Respir. J. 13: 1455–1476.PubMedCrossRefGoogle Scholar
  30. Gross, N. J. and Narine, K. R. 1989. Surfactant subtypes of mice: metabolic relationships and conversion in vitro. J. Appl. Physiol. 67: 414–421.PubMedGoogle Scholar
  31. Gross, N. J. and Schultz, R. M. 1990. Serine proteinase requirement for the extra-cellular metabolism of pulmonary surfactant. Biochim. Biophys. Acta 1044: 222–230.PubMedCrossRefGoogle Scholar
  32. Gross, N. J. and Schultz, R. M. 1992. Requirements for extracellular metabolism of pulmonary surfactant: tentative identification of serine protease. Am. J. Physiol. 262: L446 - L453.PubMedGoogle Scholar
  33. Gross, N. J. 1995. Extracellular metabolism of pulmonary surfactant: the role of a new serine protease. Annu. Rev. Physiol. 57: 135–150.PubMedCrossRefGoogle Scholar
  34. Gunther, A., Schmidt, R., Feustel, A., Meier, U., Pucker, C., Ermert, M., and Seeger, W. 1999. Surfactant subtype conversion is related to loss of surfactant apoprotein B and surface activity in large surfactant aggregates. Experimental and clinical studies. Am. J. Respir. Crit. Care. Med. 159: 244–251.PubMedCrossRefGoogle Scholar
  35. Haagsman, H. P. and Van Golde, L. M. 1991. Synthesis and assembly of lung surfactant. Annu. Rev. Physiol. 53: 441–464.PubMedCrossRefGoogle Scholar
  36. Haagsman, H. P. and Diemel, R. V. 2001. Surfactant-associated proteins: functions and structural variation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129: 91–108.PubMedCrossRefGoogle Scholar
  37. Haller, T, Pfaller, K., and Dietl, P. 2001. The conception of fusion pores as rate-limiting struc-tures for surfactant secretion. Comp. Biochem. Physiol. A Mo1.Integr. Physiol. 129: 227–231.CrossRefGoogle Scholar
  38. Hallman, M. and Gluck, L. 1975. Phosphatidylglycerol in lung surfactant. II. Subcellular dis-tribution and mechanism of biosynthesis in vitro. Biochim. Biophys. Acta 409: 172–191.PubMedCrossRefGoogle Scholar
  39. Hallman, M., Kulovich, M., Kirkpatrick, E., Sugarman, R. G., and Gluck, L. 1976. Phosphatidylinositol and phosphatidylglycerol in amniotic fluid: indices of lung maturity. Am. J. Obstet. Gynecol. 125: 613–617.PubMedGoogle Scholar
  40. Hallman, M., Feldman, B. H., Kirkpatrick, E., and Gluck, L. 1977. Absence of phosphatidylglycerol (PG) in respiratory distress syndrome in the newborn. Study of the minor surfactant phospholipide in newborns. Pediatr. Res. 11: 714–720.PubMedCrossRefGoogle Scholar
  41. Hallman, M., Epstein, B. L., and Gluck, L. 1981. Analysis of labeling and clearance of lung surfactant phospholipids in rabbit. Evidence of bidirectional surfactant flux between lamellar bodies and alveolar lavage. J Clin. Invest. 68: 742–751.PubMedCrossRefGoogle Scholar
  42. Hawgood, S., Derrick, M., and Poulain, E 1998. Structure and properties of surfactant protein B. Biochim. Biophys. Acta. 1408: 150–160.PubMedCrossRefGoogle Scholar
  43. Heeley, E. L., Hohlfeld, J. M., Krug, N., and Postle, A. D. 2000. Phospholipid molecular species of bronchoalveolar lavage fluid after local allergen challenge in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 278: L305 - L311.PubMedGoogle Scholar
  44. Higuchi, R., Lewis, J., and Ikegami, M. 1992. In vitro conversion of surfactant subtypes is altered in alveolar surfactant isolated from injured lungs. Am. Rev. Respir. Dis. 145: 1416–1420.PubMedCrossRefGoogle Scholar
  45. Hite, R. D., Seeds, M. C., Jacinto, R. B., Balasubramanian, R., Waite, M., and Bass, D. 1998. Hydrolysis of surfactant-associated phosphatidylcholine by mammalian secretory phospholipases A2. Am. J. Physiol. 275: L740 - L747.PubMedGoogle Scholar
  46. Hohlfeld, J. M., Ahif, K., Enhorning, G., Balke, K., Erpenbeck, V. J., Petschallies, J., Hoymann, H. G., Fabel, H., and Krug, N. 1999. Dysfunction of pulmonary surfactant in asthmatics after segmental allergen challenge. Am. J. Respir. Crit. Care Med. 159: 1803–1809.PubMedCrossRefGoogle Scholar
  47. Holm, B. A., Notter, R. H., Siegle, J., and Matalon, S. 1985. Pulmonary physiological and surfactant changes during injury and recovery from hyperoxia. J. Appl. Physiol. 59: 1402–1409.PubMedGoogle Scholar
  48. Holm, B. A., Wang, Z., Egan, E. A., and Notter, R. H. 1996. Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity. Pediatr. Res. 39: 805–811.PubMedCrossRefGoogle Scholar
  49. Ikegami, M., Korfhagen, T. R., Whitsett, J. A., Bruno, M. D., Wert, S. E., Wada, K., and Jobe, A. H. 1998. Characteristics of surfactant from SP-A-deficient mice. Am. J Physiol. 275: L247 - L254.PubMedGoogle Scholar
  50. Ikegami, M., Whitsett, J. A., Jobe, A., Ross, G., Fisher, J., and Korfhagen, T. 2000. Surfactant metabolism in SP-D gene-targeted mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 279: L468 - L476.PubMedGoogle Scholar
  51. Inchley, K., Cockshutt, A., Veldhuizen, R., and Possmayer, F. 1999 Dissociation of surfactant protein B from canine surfactant large aggregates during formation of small surfactant aggregates by in vitro surface area cycling. Biochem. Biophys. Acta. 1440: 49–58.PubMedCrossRefGoogle Scholar
  52. Jain, D., Dodia, C., Bates, S. R., Hawgood, S., Poulain, F. R., and Fisher, A. B. 2003. SP-A is necessary for increased clearance of alveolar DPPC with hyperventilation or secretagogues. Am. J Physiol. Lung Cell Mol. Physiol. 284: L759 - L765.PubMedGoogle Scholar
  53. Jobe, A. H., Ikegami, M., Seidner, S. R., Pettenazzo, A., and Ruffini, L. 1989. Surfactant phosphatidylcholine metabolism and surfactant function in preterm, ventilated lambs. Am. Rev. Respir. Dis. 139: 352–359.PubMedCrossRefGoogle Scholar
  54. Jobe, A. H. and Ikegami, M. 2000. Lung development and function in preterm infants in the surfactant treatment era. Annu. Rev. Physiol. 62: 825–846.PubMedCrossRefGoogle Scholar
  55. Johansson, J. 1998. Structure and properties of surfactant protein C. Biochim. Biophys. Acta 1408: 161–172.PubMedCrossRefGoogle Scholar
  56. Kahn, M. C., Anderson, G. J., Anyan, W. R., and Hall, S. B. 1995. Phosphatidylcholine molecular species of calf lung surfactant. Am. J. Physiol. 269: L567 - L573.PubMedGoogle Scholar
  57. Kalina, M. and Socher, R. 1990. Internalization of pulmonary surfactant into lamellar bodies of cultured rat pulmonarytype II cells. J. Histochem. Cytochem. 38: 483–492.PubMedCrossRefGoogle Scholar
  58. Kalina, M., McCormack, E X., Crowley, H., Voelker, D. R., and Mason, R. J. 1993. Internalization of surfactant protein A (SP-A) into lamellar bodies of rat alveolar type II cells in vitro. J Histochem. Cytochem. 41: 57–70.PubMedCrossRefGoogle Scholar
  59. Kennedy, E. P. 1961. Biosynthesis of complex lipids. Fed. Proc. 20: 934–940.PubMedGoogle Scholar
  60. Klein, J. M., McCarthy, T. A., Dagle, J. M., and Snyder, J. M. 2002. Antisense inhibition of surfactant protein A decreases tubular myelin formation in human fetal lung in vitro. Am. J. Physiol. Lung Cell Mol. Physiol. 282: L386 - L393.PubMedGoogle Scholar
  61. Korfhagen, T. R., Bruno, M. D., Ross, G. E, Huelsman, K. M., Ikegami, M., Jobe, A. H., Wert, S. E., Stripp, B. R., Morris, R. E., Glasser, S. W, Bachurski, C. J., Iwamoto, H. S., and Whitsett, J. A. 1996. Altered surfactant function and structure in SP-A gene targeted mice. Proc. Natl. Acad. Sci. USA 93: 9594–9599.PubMedCrossRefGoogle Scholar
  62. Korfhagen, T. R., LeVine, A. M., and Whitsett, J. A. 1998. Surfactant protein A (SP-A) gene targeted mice. Biochim. Biophys. Acta 1408: 296–302.PubMedCrossRefGoogle Scholar
  63. Krishnasamy, S., Gross, N. J., Teng, A. L., Schultz, R. M., and Dhand, R. 1997. Lung “surfactant convertase” is a member of the carboxylesterase family. Biochem. Biophys. Res. Commun. 235: 180–4.PubMedCrossRefGoogle Scholar
  64. Kuroki, Y., Mason, R. J., and Voelker, D. R. 1988. Pulmonary surfactant apoprotein A structure and modulation of surfactant secretion by rat alveolar type II cells. J. Biol. Chem. 263: 3388–3394.PubMedGoogle Scholar
  65. Lewis, J. E, Ikegami, M., and Jobe, A. H. 1990. Altered surfactant function and metabolism in rabbits with acute lung injury. J. Appl. Physiol. 69: 2303–2310.PubMedGoogle Scholar
  66. Lewis, J. E. and Jobe, A. H. 1993. Surfactant and the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 147: 218–233.PubMedCrossRefGoogle Scholar
  67. Lewis, J. F. and Veldhuizen, R. 2003. The role of exogenous surfactant in the treatment of acute lung injury. Annu. Rev. Physiol. 65: 613–642.PubMedCrossRefGoogle Scholar
  68. Li, J., Marsh, J. J., and Spragg, R. G. 2002. Effect of CTP:phosphocholine cytidylyltransferase overexpression on the mouse lung surfactant system. Am. J. Respir. Cell Mol. Biol. 26: 709–715.PubMedCrossRefGoogle Scholar
  69. Liu, L. 1999. Calcium-dependent self-association of annexin II: a possible implication in exocytosis. Cell Signal 11: 317–324.PubMedCrossRefGoogle Scholar
  70. Livingston, D. H., Mosenthal, A. C., and Deitch, E. A. 1995. Sepsis and multiple organ dysfunction syndrome: a clinical-mechanistic overview. New Horiz. 3: 257–264.PubMedGoogle Scholar
  71. Magoon, M. W, Wright, J. R., Baritussio, A., Williams, M. C., Goerke, J., Benson, B. J., Hamilton, R. L., and Clements, J. A. 1983. Subfractionation of lung surfactant. Implications for metabolism and surface activity. Biochim. Biophys. Acta. 750: 18–31.PubMedCrossRefGoogle Scholar
  72. Malloy, J., McCaig, L., Veldhuizen, R., Yao, L. J., Joseph, M., Whitsett, J., and Lewis, J. 1997. Alterations of the endogenous surfactant system in septic adult rats. Am. J. Respir. Crit. Care Med. 156: 617–623.PubMedCrossRefGoogle Scholar
  73. Mason, R. J., Nellenbogen, J., and Clements, J. A. 1976. Isolation of disaturated phosphatidylcholine with osmium tetroxide. J. Lipid Res. 17: 281–284.PubMedGoogle Scholar
  74. Mason, R. J. and Voelker, D. R. 1998. Regulatory mechanisms of surfactant secretion. Biochim. Biophys. Acta. 1408: 226–240.Google Scholar
  75. Massaro, G. D. and Massaro, D. 1983. Morphologic evidence that large inflations of the lung stimulate secretion of surfactant. Am. Rev. Respir. Dis. 127: 235–236.PubMedGoogle Scholar
  76. Maygarden, S. J., Iacocca, M. V, Funkhouser, W. K., and Novotny, D. B. 2001. Pulmonary alveolar proteinosis: a spectrum of cytologic, histochemical, and ultrastructural findings in bronchoalveolar lavage fluid. Diagn. Cytopathol. 24: 389–395.PubMedCrossRefGoogle Scholar
  77. McCormack, F. X. 1998. Structure, processing and properties of surfactant protein A. Biochim. Biophys. Acta 1408: 109–131.PubMedCrossRefGoogle Scholar
  78. McCormack, E X. and Whitsett, J. A. 2002. The pulmonary collectins, SP-A and SP-D, orchestrate innate immunity in the lung. J. Clin. Invest. 109: 707–712.PubMedGoogle Scholar
  79. Mendelson, C. R. and Boggaram, V. 1991. Hormonal control of the surfactant system in fetal lung. Annu. Rev. Physiol. 53: 415–440.PubMedCrossRefGoogle Scholar
  80. Nag, K., Munro, J. G., Hearn, S. A., Rasmusson, J., Petersen, N. O., and Possmayer, E 1999. Correlated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant. J. Struct. Biol. 126: 1–15.PubMedCrossRefGoogle Scholar
  81. Nanjundan, M. and Possmayer, F. 2003. Phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am..1 Physiol. Lung Cell Mol. Physiol. 284: L1 - L23.Google Scholar
  82. Nicholas, T. E. and Barr, H. A. 1983. The release of surfactant in rat lung by brief periods of hyperventilation. Respir. Physiol. 52: 69–83.PubMedCrossRefGoogle Scholar
  83. Nogee, L. M., Gamier, G., Dietz, H. C., Singer, L., Murphy, A. M., deMello, D. E., and Colten, H. R. 1994. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kinrireds. J. Clin. Invest. 93: 1860–1863.PubMedCrossRefGoogle Scholar
  84. Nogee, L. M., Dunbar, A. E., III, Wert, S., Askin, F., Hamvas, A., and Whitsett, J. A. 2002. Mutations in the surfactant protein C gene associated with interstitial lung disease. Chest 121: 20S - 21S.PubMedCrossRefGoogle Scholar
  85. Ochs, M., Fefirenbach, H., Nenadic, I., Bando, T., Fetirenbach, A., Schepelmann, D., Albes, J. M., Wahlers, T., and Richter, J. 2000. Preservation of intraalveolar surfactant in a rat lung ischaemia/reperfusion injury model. Eur. Respir. J. 15: 526–531.PubMedCrossRefGoogle Scholar
  86. Orgeig, S. and Daniels, C. B. 2001. The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 129: 75–89.PubMedCrossRefGoogle Scholar
  87. Persson, A., Chang, D., Rust, K., Moxley, M., Longmore, W, and Crouch, E. 1989. Purification and biochemical characterization of CP4 (SP-D), a collagenous surfactant-associated protein. Biochemistry 28: 6361–6367.PubMedCrossRefGoogle Scholar
  88. Petty, T. L. 1990. Acute respiratory distress syndrome (ARDS). Dis.Mon. 36: 1–58.PubMedGoogle Scholar
  89. Piknova, B., Schief, W. R., Vogel, V, Discher, B. M., and Hall, S. B. 2001. Discrepancy between phase behavior of lung surfactant phospholipids and the classical model of sur-factant function. Biophys. J. 81: 2172–2180.PubMedCrossRefGoogle Scholar
  90. Piknova, B., Schram, V, and Hall, S. B. 2002. Pulmonary surfactant: phase behavior and function. Curr. Opin. Struct. Biol. 12: 487–494.PubMedCrossRefGoogle Scholar
  91. Possmayer, F. 1988. A proposed nomenclature for pulmonary surfactant-associated proteins. Am. Rev. Respir. Dis. 138: 990–998.PubMedCrossRefGoogle Scholar
  92. Possmayer, F., Nag, K., Rodriguez, K., Qanbar, R., and Schürch, S. 2001. Surface activity in vitro: role of surfactant proteins. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129: 209–220.PubMedCrossRefGoogle Scholar
  93. Possmayer, F. 2004. Physicochemical aspects of pulmonary surfactant. In Fetal and Neonatal Physiology (3rd edn.), ( Polin, R. A., Fox, W. W, and Abman, S. H., eds.), W.B. Saunders Company, Philadelphia, pp. 1014–1034.Google Scholar
  94. Post, M., Batenburg, J. J., Schuurmans, E. A., Laros, C. D., and Van Golde, L. M. 1982. Lamellar bodies isolated from adult human lung tissue. Exp. Lung Res. 3: 17–28.PubMedCrossRefGoogle Scholar
  95. Post, M., Schuurmans, E. A., Batenburg, J. J., and Van Golde, L. M. 1983. Mechanisms involved in the synthesis of disaturated phosphatidylcholine by alveolar type II cells isolated from adult rat lung. Biochim. Biophys. Acta 750: 68–77.PubMedCrossRefGoogle Scholar
  96. Post, M., Batenburg, J. J., Van Golde, L. M., and Smith, B. T. 1984. The rate-limiting reaction in phosphatidylcholine synthesis by alveolar type II cells isolated from fetal rat lung. Biochim. Biophys. Acta. 795: 558–563.PubMedCrossRefGoogle Scholar
  97. Postle, A. D., Heeley, E. L., and Wilton, D. C. 2001. A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129: 65–73.PubMedCrossRefGoogle Scholar
  98. Poulain, E R., Allen, L., Williams, M. C., Hamilton, R. L., and Hawgood, S. 1992. Effects of surfactant apolipoproteins on liposome structure: implications for tubular myelin formation. Am. J. Physiol. 262: L730 - L739.PubMedGoogle Scholar
  99. Pritchard, P. H. and Vance, D. E. 1981. Choline metabolism and phosphatidylcholine biosynthesis in cultured rat hepatocytes. Biochem. J 196: 261–267.PubMedGoogle Scholar
  100. Pryhuber, G. S., Bachurski, C., Hirsh, R., Bacon, A., and Whitsett, J. A. 1998. Tumor necrosis factor-alpha decreases surfactant protein B mRNA in murine lung. Am. J. Physiol. 270: L714 - L721.Google Scholar
  101. Putz, G., Goerke, J., and Clements, J. A. 1994. Surface activity of rabbit pulmonary surfactant subfractions at different concentrations in a captive bubble. J Appl. Physiol. 77: 597–605.PubMedGoogle Scholar
  102. Quintero, O. A., Korfhagen, T. R., and Wright, J. R. 2002. Surfactant protein A regulates surfactant phospholipid clearance after LPS-induced injury in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 283: L76 - L85.PubMedGoogle Scholar
  103. Rider, E. D., Ikegami, M., and Jobe, A. H. 1992. Localization of alveolar surfactant clearance in rabbit lung cells. Am. J Physiol. 263: L201 - L209.PubMedGoogle Scholar
  104. Rooney, S. A., Page-Roberts, B. A., and Motoyama, E K 1975. Role of lamellar inclusions in surfactant production: studies on phospholipid composition and biosynthesis in rat and rabbit lung subcellular fractions. J Lipid. Res. 16: 418–425.PubMedGoogle Scholar
  105. Rooney, S. A. 1985. The surfactant system and lung phospholipid biochemistry. Am. Rev. Respir. Dis. 131: 439–460.PubMedGoogle Scholar
  106. Rooney, S.A. 1989. Fatty acid biosynthesis in the fetal lung Am. J. Physiol. 257:L195–201. Rooney, S. A. 2001. Regulation of surfactant secretion. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129: 233–243.CrossRefGoogle Scholar
  107. Rose, F, Kurth-Landwehr, C., Sibelius, U., Reuner, K. H., Aktories, K., Seeger, W, and Grimminger, F. 1999. Role of actin depolymerization in the surfactant secretory response of alveolar epithelial type II cells. Am. J Respir. Crit. Care Med. 159: 206–212.PubMedCrossRefGoogle Scholar
  108. Rubins, J. B., Panchenko, M., Shannon, T. M., and Dickey, B. E 1992. Identification of ras and ras-related low-molecular-mass GTP-binding proteins associated with rat lung lamellar bodies. Am..1 Respir. Cell Mol. Biol. 6: 253–259.CrossRefGoogle Scholar
  109. Ruckert, P., Bates, S. R., and Fisher, A. B. 2003. Role Of clathrin-and actin-dependent endocytotic pathways in lung phospholipid uptake. Am. J. Physiol. Lung Cell Mol. Physiol. 284: L981 - L989.PubMedGoogle Scholar
  110. Sanders, R. L., Hassett, R. J., and Vatter, A. E. 1980. Isolation of lung lamellar bodies and their conversion to tubular myelin figures in vitro. Anat. Rec. 198: 485–501.PubMedCrossRefGoogle Scholar
  111. Savoy, J., Silbajoris, R., and Young, S. L. 1999. Mechanical ventilation of rat lung: effect on surfactant forms. Am. J. Physiol. 277: L320 - L326.Google Scholar
  112. Schmitz, G. and Muller, G. 1991. Structure and function of lamellar bodies, lipid-protein com- plexes involved in storage and secretion of cellular lipids. J. Lipid. Res. 32: 1539–1570.PubMedGoogle Scholar
  113. Schûrch, S., Bachofen, H., Goerke, J., and Possmayer, F 1989. A captive bubble method reproduces the in situ behavior of lung surfactant monolayers. J. Appl. Physiol. 67: 2389–2396.PubMedGoogle Scholar
  114. Schûrch, S., Possmayer, F, Cheng, S., and Cockshutt, A. M. 1992. Pulmonary SP-A enhances adsorption and appears to induce surface sorting of lipid extract surfactant. Am. J Physiol. 263: L210 - L218.PubMedGoogle Scholar
  115. Schûrch, S., Qanbar, R., Bachofen, H., and Possmayer, E 1995. The surface-associated surfactant reservoir in the alveolar lining. Biol. Neonate. 67 Suppl 1:61–76.PubMedGoogle Scholar
  116. Schûrch, S., Green, F H., and Bachofen, H. 1998. Formation and structure of surface films: captive bubble surfactometry. Biochim. Biophys. Acta. 1408:180–202.PubMedCrossRefGoogle Scholar
  117. Shelley, S. A., Paciga, J. E., and Balis, J. U. 1984. Lung surfactant phospholipids in different animal species. Lipids 19: 857–862.PubMedCrossRefGoogle Scholar
  118. Spragg, R. G. and Li, J. 2000. Effect of phosphocholine cytidylyltransferase overexpression on phosphatidylcholine synthesis in alveolar type II cells and related cell lines. Am. J Respir. Cell Mol. Biol 22: 116–124.PubMedCrossRefGoogle Scholar
  119. Stevens, P. A., Wright, J. R., and Clements, J. A. 1987. Changes in quantity, composition, and surface activity of alveolar surfactant at birth. J. Appl. Physiol. 63: 1049–1057.PubMedGoogle Scholar
  120. Summers, J. E. 1966. Pulmonary alveolar proteinosis. Review of the literature with follow-up studies and report of two new cases. Calif. Med. 104: 428–436.PubMedGoogle Scholar
  121. Suzuki, Y., Fujita, Y, and Kogishi, K. 1989. Reconstitution of tubular myelin from synthetic lipids and proteins associated with pig pulmonary surfactant. Am. Rev. Respir. Dis. 140: 75–81.PubMedCrossRefGoogle Scholar
  122. Thomassen, M. J., Yi, T., Raychaudhuri, B., Malur, A., and Kavuru, M. S. 2000. Pulmonary alveolar proteinosis is a disease of decreased availability of GM-CSF rather than an intrinsic cellular defect. Clin. Immunol. 95: 85–92.PubMedCrossRefGoogle Scholar
  123. Tsilibary, E. C. and Williams, M. C. 1983. Actin and secretion of surfactant. J. Histochem. Cytochem. 31: 1298–1304.PubMedCrossRefGoogle Scholar
  124. Ueda, T., Ikegami, M., and Jobe, A. 1994. Surfactant subtypes: In vitro conversion, in vivo function, and effects of serum proteins. Am. J. Respir. Crit. Care Med. 149: 1254–1259.PubMedCrossRefGoogle Scholar
  125. Van Bree, L., Haagsman, H. P., Van Golde, L. M., and Rombout, P. J. 1988. Phosphatidylcholine synthesis in isolated type II pneumocytes from ozone-exposed rats. Arch. Toxicol. 61: 224–228.PubMedCrossRefGoogle Scholar
  126. Veldhuizen, R. A., Inchley, K., Hearn, S. A., Lewis, J. F., and Possmayer, E 1993A. Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates. Biochem. J. 295: 141–147.Google Scholar
  127. Veldhuizen, R. A., Lee, J., Sandler, D., Hull, W, Whitsett, J. A., Lewis, J., Possmayer, E, and Novick, R. J. 1993B. Alterations in pulmonary surfactant composition and activity after experimental lung transplantation. Am. Rev. Respir. Dis. 148: 208–215.Google Scholar
  128. Veldhuizen, R. A. W, Hearn, S. A., Lewis, J. E, and Possmayer, E 1994. Surface-area cycling of different surfactant preparations: SP-A and SP-B are essential for large-aggregate integrity. Biochem. J. 300: 519–524.PubMedGoogle Scholar
  129. Veldhuizen, R. A. W, Yao, L.-J., Hearn, S. A., Possmayer, E, and Lewis, J. E 1996A. Surfactant-associated protein A is important for maintaining large aggregate forms during surface area cycling. Biochem. J. 313: 835–840.Google Scholar
  130. Veldhuizen, R. A. W, Marcou, J., Yao, L.-J., McCaig, L., Ito, Y., and Lewis, J. E 1996B. Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am. J. Physiol. 270:L 152-L 158.Google Scholar
  131. Veldhuizen, R. A. W, Ito, Y., Marcou, J., Yao, L. J., McCaig, L., and Lewis, J. E 1997. Effects of lung injury on pulmonary surfactant aggregate conversion in vivo and in vitro. Am. J. Physiol. 16:L 872-L 878.Google Scholar
  132. Veldhuizen, R. A., Yao, L., and Lewis, J. E 1999. An examination of the different variables affecting surfactant aggregate conversion in vitro. Exp. Lung Res. 25: 127–141.PubMedCrossRefGoogle Scholar
  133. Veldhuizen, R. A. W, Tremblay, L. N., Govindarajan, A., Rozendaal, B. A. W. M., Haagsman, H. P., and Slutsky, A. S. 2000. Pulmonary surfactant is altered during mechanical ventilation of isolated rat lung. Crit. Care Med. 28: 2545–2551.PubMedCrossRefGoogle Scholar
  134. Veldhuizen, R. A., Welk, B., Harbottle, R., Hearn, S., Nag, K., Petersen, N., and Possmayer, E. 2002. Mechanical ventilation of isolated rat lungs changes the structure and biophysical properties of surfactant. J. Appl. Physiol. 92: 1169–1175.PubMedGoogle Scholar
  135. Voorhout, W. E, Veenendaal, T., Haagsman, H. P., Verkleij, A. J., Van Golde, L. M., and Geuze, H. J. 1991. Surfactant protein A is localized at the corners of the pulmonary tubular myelin lattice. J. Histochem. Cytochem. 39: 1331–1336.PubMedCrossRefGoogle Scholar
  136. Voorhout, W. E, Veenendaal, T., Haagsman, H. P., Weaver, T E., Whitsett, J. A., and Geuze, H. J. 1992. Intracellular processing of pulmonary surfactant protein B in an endosomal/lysosomal compartment. Am. J. Physiol. 263: L479 - L486.PubMedGoogle Scholar
  137. Watkins, J. C. 1968. The surface properties of pure phospholipid in relation to those of lung extracts. Biochim. Biophys. Acta. 152: 293–306.PubMedCrossRefGoogle Scholar
  138. Weaver, T. E. 1998. Synthesis, processing and secretion of surfactant proteins B and C. Biochim. Biophys. Acta 1408: 173–179.PubMedCrossRefGoogle Scholar
  139. Weaver, T. E., Na, C. L., and Stahlman, M. 2002. Biogenesis of lamellar bodies, lysosome-related organelles involved in storage and secretion of pulmonary surfactant. Semin. Cell Dey. Biol. 13: 263–270.CrossRefGoogle Scholar
  140. Wert, S., Jones, T., Korfhagen, T., Fisher, J., and Whitsett, J. 2000. Spontaneous emphysema in surfactant protein D gene-targeted mice. Chest. 117: 248S.PubMedCrossRefGoogle Scholar
  141. Williams, M. C. 1982. Ultrastructure of tubular myelin and lamellar bodies in fast-frozen adult rat lung. Exp. Lung Res. 4: 37–46.PubMedCrossRefGoogle Scholar
  142. Williams, M. C., Hawgood, S., and Hamilton, R. L. 1991. Changes in lipid structure produced by surfactant proteins SP-A, SP-B, and SP-C. Am. J Resp. Cell. Mol. Biol. 5: 41–50.CrossRefGoogle Scholar
  143. Wright, J. R. 1990. Clearance and recycling of pulmonary surfactant. Am. J. Physiol. 259:L1–12. Wright, J. R. and Dobbs, L. G. 1991. Regulation of pulmonary surfactant secretion and clearance. Annu. Rev. Physiol. 53: 395–414.Google Scholar
  144. Yamada, T., Ikegami, M., and Jobe, A. H. 1990. Effects of surfactant subfractions on preterm rabbit lung function. Pediatr. Res. 27: 592–598.PubMedCrossRefGoogle Scholar
  145. Yoshida, M., Ikegami, M., Reed, J. A., Chroneos, Z. C., and Whitsett, J. A. 2001. GM-CSF regulates protein and lipid catabolism by alveolar macrophages. Am. J Physiol. Lung Cell Mol. Physiol. 280: L379 - L386.PubMedGoogle Scholar
  146. Yost, C. C. and Soll, R. E 2000. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane. Database. Syst. Rev. CD001456.Google Scholar
  147. Young, S. L., Fram, E. K., and Larson, E. W. 1992. Three-dimensional reconstruction of tubular myelin. Exp. Lung Res. 18: 497–504.PubMedCrossRefGoogle Scholar
  148. Yu, S. H. and Possmayer, E 2003. Lipid compositional analysis of pulmonary surfactant monolayers and monolayer-associated reservoirs. J Lipid. Res. 44: 621–629.PubMedCrossRefGoogle Scholar
  149. Zimmermann, L. J., Hogan, M, Carlson, K. S., Smith, B. T., and Post, M. 1993. Regulation of phosphatidylcholine synthesis in fetal type II cells by CTP:phosphocholine cytidylyltransferase. Am. J Physiol. 264: L575 - L580.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Ruud Veldhuizen
    • 1
  • Fred Possmayer
    • 2
  1. 1.Departments of Medicine and Physiology and PharmacologyLawson Health Research InstituteLondonCanada
  2. 2.Departments of Obstetrics & Gynaecology and Biochemistry, CIHR Group in Fetal and Neonatal Health and DevelopmentThe University of Western OntarioLondonCanada

Personalised recommendations