Membrane Lipid Homeostasis

  • Claude Wolf
  • Peter J. Quinn
Part of the Subcellular Biochemistry book series (SCBI, volume 37)


The lipid matrix of biological membranes is composed of a complex mixture of polar lipids. It has been estimated that more than 600 distinct molecular species of lipid are constituents of biological membranes. This rather remarkable feature raises the questions of why such complexity is required when barrier properties and many protein functions can be reconstituted with relatively simple lipid systems. Secondly, the molecular species composition of morphologically distinct membranes appears to be preserved within fairly narrow limits. The biochemical mechanism(s) responsible for this homeostasis are not fully understood. This review examines the origin of membrane lipid complexity, the methods that are currently employed to measure and detect lipid molecular species and the biochemical reactions associated with the turnover of membrane lipids in resting and stimulated cells.


Membrane Lipid Molecular Species Lipid Class Phorbol Myristate Acetate Outer Leaflet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, S. N., Brown, D. A. and London, E. (1997) On the origin of sphingolipid/ cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry, 36, 10944–10953.PubMedCrossRefGoogle Scholar
  2. Anderson, R. G. and Jacobson, K. (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science, 296, 1821–1825.PubMedCrossRefGoogle Scholar
  3. Bai, J. and Pagano, R. E. (1997) Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry, 36, 8840–8848.PubMedCrossRefGoogle Scholar
  4. Barbu, V, Roux, C., Lambert, D., Dupuis, R., Gardette, J., Maziere, J. C., Maziere, C., Elefant, E. and Polonovski, J. (1988) Cholesterol prevents the teratogenic action of AY 9944: importance of the timing of cholesterol supplementation to rats. J Nutr, 118, 774–779.PubMedGoogle Scholar
  5. Biagi, P. L., Bordoni, A., Lorenzini, A., Horrobin, D. E. and Hrelia, S. (1999) Essential fatty acid metabolism in long term primary cultures of rat cardiomyocytes: a beneficial effect of n-6:n-3 fatty acids supplementation. Mech Ageing Dey, 107, 181–195.CrossRefGoogle Scholar
  6. Blank, M. L., Smith, Z. L., Fitzgerald, V. and Snyder, E (1995) The CoA-independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity. Biochim Biophys Acta, 1254, 295–301.PubMedCrossRefGoogle Scholar
  7. Bourre, J. M., Durand, G., Pascal, G. and Youyou, A. (1989a) Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. JNutr, 119, 15–22.Google Scholar
  8. Bourre, J. M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G. and Durand, G. (1989b) The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. JNutr, 119, 1880–1892.Google Scholar
  9. Brugger, B., Erben, G., Sandhoff, R., Wieland, F. T. and Lehmann, W. D. (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc NatlAcad Sci USA, 94, 2339–2344.CrossRefGoogle Scholar
  10. Bui, B. V, Weisinger, H. S., Sinclair, A. J. and Vingrys, A. J. (1998) Comparison of guinea pig electroretinograms measured with bipolar corneal and unipolar intravitreal electrodes. Doc Ophthalmol, 95, 15–34.PubMedCrossRefGoogle Scholar
  11. Burgoyne, R. D. and Geisow, M. J. (1989) The annexin family of calcium-binding proteins. Review article. Cell Calcium, 10, 1–10.PubMedCrossRefGoogle Scholar
  12. Clark, J. D., Lin, L. L., Kriz, R. W, Ramesha, C. S., Sultzman, L. A., Lin, A. Y., Milona, N. and Knopf, J. L. (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell, 65, 1043–1051.PubMedCrossRefGoogle Scholar
  13. Colard, O., Bard, D., Bereziat, G. and Polonovski, J. (1980) Acylation of endogenous phospholipids and added lysoderivatives by rat liver plasma membranes. Biochim Biophys Acta, 618, 88–97.PubMedCrossRefGoogle Scholar
  14. Comera, C., Rothhut, B. and Russo-Marie, E (1990) Identification and characterization of phospholipase A2 inhibitory proteins in human mononuclear cells. Eur JBiochem, 188, 139–146.CrossRefGoogle Scholar
  15. Comfurius, P., Williamson, P., Smeets, E. F., Schlegel, R. A., Bevers, E. M. and Zwaal, R. E. (1996) Reconstitution of phospholipid scramblase activity from human blood platelets. Biochemistry, 35, 7631–7634.PubMedCrossRefGoogle Scholar
  16. Cooper, M. K., Porter, J. A., Young, K. E. and Beachy, P. A. (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science, 280, 1603–1607.PubMedCrossRefGoogle Scholar
  17. Cossins, A. R. (1994). Temperature adaptation of Biological Membranes. London, Portland Press.Google Scholar
  18. Cremesti, A. E., Goni, E M. and Kolesnick, R. (2002) Role of sphingomyelinase and cet-amide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett, 531, 47–53.PubMedCrossRefGoogle Scholar
  19. Dawson, R. M., Hemington, N. and Irvine, R. E (1985) The inhibition of diacylglycerolstimulated intracellular phospholipases by phospholipids with a phosphocholinecontaining polar group. A possible physiological role for sphingomyelin. Biochem J, 230, 61–68.PubMedGoogle Scholar
  20. Dawson, R. M., Irvine, R. E, Bray, J. and Quinn, P. J. (1984) Long-chain unsaturated diacylglycerols cause a perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack. Biochem Biophys Res Commun, 125, 836–842.PubMedCrossRefGoogle Scholar
  21. de Cingolani, G. E., van den Bosch, H. and van Deenen, L. L. (1972) Phospholipase A and lysophospholipase activities in isolated fat cells: effect of cyclic 3’,5’-AMP. Biochim Biophys Acta, 260, 387–392.PubMedCrossRefGoogle Scholar
  22. Devaux, P. F., Zachowski, A., Favre, E., Fellmann, P., Cribier, S., Geldwerth, D., Herve, P. and Seigneuret, M. (1986) [Energy-dependent translocation of amino-phospholipids in the erythrocyte membrane]. Biochimie, 68, 383–393.PubMedCrossRefGoogle Scholar
  23. Dickens, B. F, Ramesha, C. S. and Thompson, G. A., Jr. (1982) Quantification of phospholipid molecular species by coupled gas chromatography-mass spectrometry of deuterated samples. Anal Biochem, 127, 37–48.PubMedCrossRefGoogle Scholar
  24. Dobrowsky, R. T. (2000) Sphingolipid signalling domains floating on rafts or buried in caves? Cell Signal, 12, 81–90.PubMedCrossRefGoogle Scholar
  25. Edidin, M. (2001) Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol, 11, 492–496.PubMedCrossRefGoogle Scholar
  26. Exton, J. H. (2002) Regulation of phospholipase D. FEBS Lett, 531, 58–61.PubMedCrossRefGoogle Scholar
  27. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. and Chen, J. (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science, 294, 1942–1945.PubMedCrossRefGoogle Scholar
  28. Farese, R. V, Jr., Cases, S., Ruland, S. L., Kayden, H. J., Wong, J. S., Young, S. G. and Hamilton, R. L. (1996) A novel function for apolipoprotein B: lipoprotein synthesis in the yolk sac is critical for maternal-fetal lipid transport in mice. JLipid Res, 37, 347–360.Google Scholar
  29. Florin-Christensen, J., Suarez, C. E., Florin-Christensen, M., Wainszelbaum, M., Brown, W. C., McElwain, T. E. and Palmer, G. H. (2001) A unique phospholipid organization in bovine erythrocyte membranes. Proc Natl Acad Sci USA, 98, 7736–7741.PubMedCrossRefGoogle Scholar
  30. Frank, C., Keilhack, H., Opitz, F., Zschornig, O. and Bohmer, E D. (1999) Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochemistry, 38, 11993–12002.PubMedCrossRefGoogle Scholar
  31. Freedman, S. D., Katz, M. H., Parker, E. M., Laposata, M., Urman, M. Y. and Alvarez, J. G. (1999) A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(-/-) mice. Proc NatlAcad Sci USA, 96, 13995–14000.CrossRefGoogle Scholar
  32. Freedman, S. D., Weinstein, D., Blanco, P. G., Martinez-Clark, P., Urman, S., Zaman, M., Morrow, J. D. and Alvarez, J. G. (2002) Characterization of LPS-induced lung inflammation in cftr-/- mice and the effect of docosahexaenoic acid. JAppl Physiol, 92, 2169–2176.Google Scholar
  33. Fridriksson, E. K., Shipkova, P. A., Sheets, E. D., Holowka, D., Baird, B. and McLafferty, E W. (1999) Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry, 38, 8056–8063.PubMedCrossRefGoogle Scholar
  34. Frohman, M. A., Sung, T. C. and Morris, A. J. (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta, 1439, 175–186.PubMedCrossRefGoogle Scholar
  35. Gaskell, S. J. and Brooks, C. J. (1977) Gas-liquid chromatography-mass spectrometry of phospholipid mixtures after enzymic hydrolysis. J Chromatogr, 142, 469–480.PubMedCrossRefGoogle Scholar
  36. Gofflot, F., Hars, C., Illien, E, Chevy, F., Wolf, C., Picard, J. J. and Roux, C. (2003) Molecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling. Hum Mol Genet, 12, 1187–1198.PubMedCrossRefGoogle Scholar
  37. Gombos, Z., Wada, H., Varkonyi, Z., Los, D. A. and Murata, N. (1996) Characterization of the Fad12 mutant of Synechocystis that is defective in delta 12 acyl-lipid desaturase activity. Biochim Biophys Acta, 1299, 117–123.PubMedCrossRefGoogle Scholar
  38. Gomez-Munoz, A. (1998) Addendum to `Modulation of cell signalling by ceramides’. Biochim Biophys Acta, 1394, 261.Google Scholar
  39. Gomez-Munoz, A. (1998) Modulation of cell signalling by ceramides. Biochim Biophys Acta, 1391, 92–109.Google Scholar
  40. Goni, F. M. and Alonso, A. (2002) Sphingomyelinases: enzymology and membrane activity. FEBS Lett, 531, 38–46.PubMedCrossRefGoogle Scholar
  41. Grange, M., Sette, C., Cuomo, M., Conti, M., Lagarde, M., Prigent, A. E and Nemoz, G. (2000) The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. JBiol Chem, 275, 33379–33387.CrossRefGoogle Scholar
  42. Grassme, H., Jendrossek, V., Bock, J., Riehle, A. and Gulbins, E. (2002) Ceramide-rich membrane rafts mediate CD40 clustering. Jlmmunol, 168, 298–307.Google Scholar
  43. Grassme, H., Jendrossek, V., Riehle, A., von Kurthy, G., Berger, J., Schwarz, H., Weller, M., Kolesnick, R. and Gulbins, E. (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med, 9, 322–330.PubMedCrossRefGoogle Scholar
  44. Hannun, Y. A. (1996) Functions of ceramide in coordinating cellular responses to stress. Science, 274, 1855–1859.PubMedCrossRefGoogle Scholar
  45. Hannun, Y. A. and Obeid, L. M. (2002) The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind JBiol Chem, 277, 25847–25850.CrossRefGoogle Scholar
  46. Holopainen, J. M., Angelova, M. I. and Kinnunen, P. K. (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J, 78, 830–838.PubMedCrossRefGoogle Scholar
  47. Holopainen, J. M., Subramanian, M. and Kinnunen, P. K. (1998) Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry, 37, 17562–17570.PubMedCrossRefGoogle Scholar
  48. Huang, H. W, Goldberg, E. M. and Zidovetzki, R. (1996) Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun, 220, 834–838.PubMedCrossRefGoogle Scholar
  49. Hutson, J. L. and Higgins, J. A. (1987) Reversible activation/inactivation of the deacylation/ acylation cycle in rat liver microsomes. Biosci Rep, 7, 73–80.PubMedCrossRefGoogle Scholar
  50. Illenberger, D., Walliser, C., Nurnberg, B., Diaz Lorente, M. and Gierschik, P. (2003) Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers. J Biol Chem, 278, 3006–3014.PubMedCrossRefGoogle Scholar
  51. Jones, J. A. and Hannun, Y. A. (2002) Tight binding inhibition of protein phosphatase-1 by phosphatidic acid. Specificity of inhibition by the phospholipid. J Biol Chem, 277, 15530–15538.PubMedCrossRefGoogle Scholar
  52. Joo, E, Chevy, E, Colard, O. and Wolf, C. (1993) The activation of rat platelets increases the exposure of polyunsaturated fatty acid enriched phospholipids on the external leaflet of the plasma membrane. Biochim Biophys Acta, 1149, 231–240.PubMedCrossRefGoogle Scholar
  53. Junge, S., Brenner, B., Lepple-Wienhues, A., Nilius, B., Lang, E, Linderkamp, O. and Gulbins, E. (1999) Intracellular mechanisms of L-selectin induced capping. Cell Signal, 11, 301–308.PubMedCrossRefGoogle Scholar
  54. Kates, M., Pugh, E.L. and Ferrante, G. (1984) Influence of temperature and growth phase on desaturase activity of the mesophilic yeast Candida lipolytica. Biomembranes, 12, 379–395.Google Scholar
  55. Katsikas, H. and Wolf, C. (1995) Blood sphingomyelins from two European countries. Biochim Biophys Acta, 1258, 95–100.PubMedCrossRefGoogle Scholar
  56. Kelley, G. G., Reks, S. E., Ondrako, J. M. and Smrcka, A. V. (2001) Phospholipase C (epsilon): a novel Ras effector. Embo J, 20, 743–754.PubMedCrossRefGoogle Scholar
  57. Kenworthy, A. (2002) Peering inside lipid rafts and caveolae. Trends Biochem Sci, 27, 435–437.PubMedCrossRefGoogle Scholar
  58. Kerkhoff, C., Trumbach, B., Gehring, L., Habben, K., Schmitz, G. and Kaever, V. (2000) Solubilization, partial purification and photolabeling of the integral membrane protein lysophospholipid:acyl-CoA acyltransferase (LAT). Eur JBiochem,267 6339–6345.CrossRefGoogle Scholar
  59. Kirsch, C., Eckert, G. P. and Mueller, W. E. (2003) Statin effects on cholesterol micro-domains in brain plasma membranes. Biochem Pharmacol, 65, 843–856.PubMedCrossRefGoogle Scholar
  60. Kirschnek, S., Paris, E, Weller, M., Grassme, H., Ferlinz, K., Riehle, A., Fuks, Z., Kolesnick, R. and Gulbins, E. (2000) CD95-mediated apoptosis in vivo involves acid sphingomyelinase. JBiol Chem, 275, 27316–27323.Google Scholar
  61. Klapisz, E., Masliah, J., Bereziat, G., Wolf, C. and Koumanov, K. S. (2000) Sphingolipids and cholesterol modulate membrane susceptibility to cytosolic phospholipase A(2). JLipid Res, 41, 1680–1688.Google Scholar
  62. Kolesnick, R. N. (1991) Sphingomyelin and derivatives as cellular signals. Prog Lipid Res, 30, 1–38.PubMedCrossRefGoogle Scholar
  63. Koty, P. P., Tyurina, Y. Y., Tyurin, V A., Li, S. X. and Kagan, V. E. (2002) Depletion of Bc1–2 by an antisense oligonucleotide induces apoptosis accompanied by oxidation and externalization of phosphatidylserine in NCI-H226 lung carcinoma cells. Mol Cell Biochem, 234–235, 125–133.PubMedCrossRefGoogle Scholar
  64. Koumanov, K., Wolf, C. and Bereziat, G. (1997) Modulation of human type II secretory phospholipase A2 by sphingomyelin and annexin VI. Biochem J, 326, 227–233.PubMedGoogle Scholar
  65. Koumanov, K. S., Quinn, P. J., Bereziat, G. and Wolf, C. (1998) Cholesterol relieves the inhibitory effect of sphingomyelin on type II secretory phospholipase A2. Biochem J, 336, 625–630.PubMedGoogle Scholar
  66. Ktistakis, N. T., Delon, C., Manifava, M., Wood, E., Ganley, I. and Sugars, J. M. (2003) Phospholipase D1 and potential targets of its hydrolysis product, phosphatidic acid. Biochem Soc Trans, 31, 94–97.PubMedCrossRefGoogle Scholar
  67. Ladenson, R. C., Monsey, J. D., Allin, J. and Silbert, D. E (1993) Utilization of exogenously supplied sphingosine analogues for sphingolipid biosynthesis in Chinese hamster ovary and mouse LM cell fibroblasts. JBiol Chem, 268, 7650–7659.Google Scholar
  68. Le Gouvello, S., Vivier, E., Debre, P., Thomas, Y. and Colard, O. (1992) CD2 triggering stimulates the formation of platelet-activating factor-acether from alkyl-arachidonoylglycerophosphocholine in a human CD4 + T lymphocyte clone. J Immunol, 149, 1289–1293.PubMedGoogle Scholar
  69. Levade, T. and Jaffrezou, J. P. (1999) Signalling sphingomyelinases: which, where, how and why? Biochim Biophys Acta, 1438, 1–17.PubMedCrossRefGoogle Scholar
  70. Lichtenbergova, L., Yoon, E. T. and Cho, W. (1998) Membrane penetration of cytosolic phospholipase A2 is necessary for its interfacial catalysis and arachidonate specificity. Biochemistry, 37, 14128–14136.PubMedCrossRefGoogle Scholar
  71. Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A. and Davis, R. J. (1993) cPLA2 is phosphorylated and activated by MAP kinase. Cell, 72, 269–278.Google Scholar
  72. Liu, P. and Anderson, R. G. (1995) Compartmentalized production of ceramide at the cell surface. JBiol Chem, 270, 27179–27185.CrossRefGoogle Scholar
  73. Llirbat, B., Wolf, C., Chevy, F., Citadelle, D., Bereziat, G. and Roux, C. (1997) Normal and inhibited cholesterol synthesis in the cultured rat embryo. J Lipid Res, 38, 22–34.PubMedGoogle Scholar
  74. Lobo, L. I. and Wilton, D. C. (1997) Combined effects of sphingomyelin and cholesterol on the hydrolysis of emulsion particle triolein by lipoprotein lipase. Biochim Biophys Acta, 1349, 122–130.PubMedCrossRefGoogle Scholar
  75. London, E. (2002) Insights into lipid raft structure and formation from experiments in model membranes. Curr Opin Struct Biol, 12, 480–486.PubMedCrossRefGoogle Scholar
  76. Lopez, I., Mak, E. C., Ding, J., Hamm, H. E. and Lomasney, J. W. (2001) A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/ mitogen-activated protein kinase pathway. JBiol Chem, 276, 2758–2765.CrossRefGoogle Scholar
  77. Magargal, W. W, Dickinson, E. S. and Slakey, L. L. (1978) Distribution of membrane marker enzymes in cultured arterial endothelial and smooth muscle cells. The subcellular location of oleoyl-CoA:1-acyl-sn-glycero-3-phosphocholine acyltransferase. J Biol Chem, 253, 8311–8318.PubMedGoogle Scholar
  78. Mann, R. K. and Beachy, P. A. (2000) Cholesterol modification of proteins. Biochim Biophys Acta, 1529, 188–202.Google Scholar
  79. Masliah, J., Bachelet, M., Colard, O., Bereziat, G. and Vargaftig, B. B. (1988) Mobilization of arachidonic acid from diacyl and ether-linked phospholipids in FMLP stimulated alveolar macrophages. Biochem Pharmacol, 37, 547–550.PubMedCrossRefGoogle Scholar
  80. McIntosh, A. L., Gallegos, A. M., Atshaves, B. P., Storey, S. M., Kannoju, D. and Schroeder, E. (2003) Fluorescence and multiphoton imaging resolve unique structural forms of sterol in membranes of living cells. JBiol Chem, 278, 6384–6403.CrossRefGoogle Scholar
  81. McKean, M. L. and Silver, M. J. (1985) Phospholipid biosynthesis in human platelets. The acylation of lyso-platelet-activating factor. Biochem J, 225, 723–729.PubMedGoogle Scholar
  82. McLaughlin, S., Wang, J., Gambhir, A. and Murray, D. (2002) PIP(2) and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct, 31, 151–175.PubMedCrossRefGoogle Scholar
  83. Melin, T. and Nilsson, A. (1997) Delta-6-desaturase and delta-5-desaturase in human Hep G2 cells are both fatty acid interconversion rate limiting and are upregulated under essential fatty acid deficient conditions. Prostaglandins Leukot Essent Fatty Acids, 56, 437–442.PubMedCrossRefGoogle Scholar
  84. Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, E, Lassner, M., Valentine, R., Lardizabal, K., Domergue, E, Yamada, A. et al.,(2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science,293 290–293.Google Scholar
  85. Miyazaki, A., Koieyama, T., Shimada, Y., Kikuchi, T., Nezu, H., Ito, K., Kasanuki, N. and Koga, T. (2002) Effects of pravastatin sodium on mevalonate metabolism in common marmosets. JBiochem (Tokyo), 132, 395–400.CrossRefGoogle Scholar
  86. Mohandas, N., Wyatt, J., Mel, S. E, Rossi, M. E. and Shohet, S. B. (1982) Lipid translocation across the human erythrocyte membrane. Regulatory factors. J Biol Chem, 257, 6537–6543.PubMedGoogle Scholar
  87. Momchilova, A., Markovska, T. and Pankov, R. (1999) Arachidonoyl-CoA:lysophosphatidylcholine acyltransferase activity in ras-transformed NIH 3T3 fibroblasts depends on the membrane composition. Biochem Mol Biol Int, 47, 555–561.PubMedGoogle Scholar
  88. Momchilova, A., Petkova, D. and Koumanov, K. (1986) Rat liver microsomal phospholipase A2 and membrane fluidity. IntJBiochem, 18, 659–663.Google Scholar
  89. Momchilova, A., Petkova, D., Mechev, I., Dimitrov, G. and Koumanov, K. (1985) Sensitivity of 5’-nucleotidase and phospholipase A2 towards liver plasma membranes modifications. Int J Biochem, 17, 787–792.PubMedCrossRefGoogle Scholar
  90. Nakashima, S., Zhao, Y. and Nozawa, Y. (1996) Molecular cloning of delta 9 fatty acid desaturase from the protozoan Tetrahymena thermophila and its mRNA expression during thermal membrane adaptation. Biochem J, 317 (Pt 1), 29–34.Google Scholar
  91. Nalefski, E. A., Sultzman, L. A., Martin, D. M., Kriz, R. W, Towler, P. S., Knopf, J. L. and Clark, J. D. (1994) Delineation of two functionally distinct domains of cytosolic phospholipase A2, a regulatory Ca(2+)-dependent lipid-binding domain and a Ca(2+)independent catalytic domain. JBiol Chem, 269, 18239–18249.Google Scholar
  92. Nixon, A. B., Greene, D. G. and Wykle, R. L. (1996) Comparison of acceptor and donor substrates in the CoA-independent transacylase reaction in human neutrophils. Biochim Biophys Acta, 1300, 187–196.PubMedCrossRefGoogle Scholar
  93. Ohanian, J. and Ohanian, V. (2001) Sphingolipids in mammalian cell signalling. Cell Mol Life Sci, 58, 2053–2068.PubMedCrossRefGoogle Scholar
  94. Okuley, J., Lightner, J., Feldmann, K., Yadav, N., Lark, E. and Browse, J. (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 6, 147–158.PubMedGoogle Scholar
  95. Okuyama, H., Saito, M., Joshi, V C., Gunsberg, S. and Wakil, S. J. (1979) Regulation by temperature of the chain length of fatty acids in yeast. JBiol Chem, 254, 12281–12284.Google Scholar
  96. Petkova, D. H., Momchilova-Pankova, A. B. and Koumanov, K. S. (1987) Effect of liver plasma membrane fluidity on endogenous phospholipase A2 activity. Biochimie, 69, 1251–1255.PubMedCrossRefGoogle Scholar
  97. Philip, F., Guo, Y. and Scarlata, S. (2002) Multiple roles of pleckstrin homology domains in phospholipase Cbeta function. FEBS Lett, 531, 28–32.PubMedCrossRefGoogle Scholar
  98. Polonovski, J., Bard, D., Colard, O. and Bereziat, G. (1974) [Change in phospholipase activity in plasma membranes of rat hepatocytes under influence of insulin and glucagon]. CR Seances Soc Biol Fil, 168, 1211–1215.Google Scholar
  99. Porter, J. A., Young, K. E. and Beachy, P. A. (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science, 274, 255–259.PubMedCrossRefGoogle Scholar
  100. Quinn, P. J. (2002) Plasma membrane phospholipid asymmetry. Subcell Biochem, 36, 39–60.PubMedCrossRefGoogle Scholar
  101. Raggers, R. J., Vogels, I. and van Meer, G. (2001) Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor. Biochem J, 357, 859–865.PubMedCrossRefGoogle Scholar
  102. Rebecchi, M. J. and Pentyala, S. N. (2000) Structure, function, and control of phosphoinositidespecific phospholipase C. Physiol Rev, 80, 1291–1335.PubMedGoogle Scholar
  103. Rhee, S. G. (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 70, 281–312.PubMedCrossRefGoogle Scholar
  104. Rhee, S. G., Illenberger, D., Walliser, C., Nurnberg, B., Diaz Lorente, M., Gierschik, E, McLaughlin, S., Wang, J., Gambhir, A. and Murray, D. (2001) Regulation of phosphoinositide-specific phospholipase C Specificity and structural requirements of phospholipase C-beta stimulation by Rho GTPases versus G protein beta gamma dimers PIP(2) and proteins: interactions, organization, and information flow. Rev Biochem 70 281–312.CrossRefGoogle Scholar
  105. Rietveld, A., Neutz, S., Simons, K. and Eaton, S. (1999) Association of sterol-and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem, 274, 12049–12054.PubMedCrossRefGoogle Scholar
  106. Rizzo, M. A., Shome, K., Watkins, S. C. and Romero, G. (2000) The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. JBiol Chem, 275, 23911–23918.CrossRefGoogle Scholar
  107. Roberts, W. L., Santikarn, S., Reinhold, V. N. and Rosenberry, T. L. (1988) Structural characterization of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase by fast atom bombardment mass spectrometry. J Biol Chem, 263, 18776–18784.PubMedGoogle Scholar
  108. Roux, C. and Aubry, M. (1966) [Teratogenic action in the rat of an inhibitor of cholesterol synthesis, AY 9944]. CR Seances Soc Biol Fil, 160, 1353–1357.Google Scholar
  109. Roux, C., Dupuis, R., Horvath, C. and Talbot, J. N. (1980) Teratogenic effect of an inhibitor of cholesterol synthesis (AY 9944) in rats: correlation with maternal cholesterolemia. JNutr, 110, 2310–2312.Google Scholar
  110. Rutter, A. J., Thomas, K. L., Herbert, D., Henderson, R. J., Lloyd, D. and Harwood, J. L. (2002) Oxygen induction of a novel fatty acid n-6 desaturase in the soil protozoon, Acanthamoeba castellanii. Biochem J, 368, 57–67.CrossRefGoogle Scholar
  111. Samet, D. and Barenholz, Y. (1999) Characterization of acidic and neutral sphingomyelinase activities in crude extracts of HL-60 cells. Chem Phys Lipids, 102, 65–77.PubMedCrossRefGoogle Scholar
  112. Sato, N. and Murata, N. (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in thermo-adaptation. Biochim Biophys Acta, 619, 353–366.PubMedCrossRefGoogle Scholar
  113. Scarlata, S., Gupta, R., Garcia, P., Keach, H., Shah, S., Kasireddy, C. R., Bittman, R. and Rebecchi, M. J. (1996) Inhibition of phospholipase C-delta 1 catalytic activity by sphingomyelin. Biochemistry, 35, 14882–14888.PubMedCrossRefGoogle Scholar
  114. Scheideler, M. A. and Bell, R. M. (1986) Efficiency of reconstitution of the membrane-associated sn-glycerol 3-phosphate acyltransferase of Escherichia coli. J Biol Chem, 261, 10990–10995.PubMedGoogle Scholar
  115. Schurer, N. Y., Rippke, F., Vogelsang, K., Schliep, V. and Ruzicka, T. (1999) Fatty acid uptake by cultured human keratinocytes grown in medium deficient in or supplemented with essential fatty acids. Arch Dermatol Res, 291, 47–53.PubMedCrossRefGoogle Scholar
  116. Schutte, B., Nuydens, R., Geerts, H. and Ramaekers, E (1998) Annexin V binding assay as a tool to measure apoptosis in differentiated neuronal cells. J Neurosci Methods, 86, 63–69.PubMedCrossRefGoogle Scholar
  117. Seigneuret, M. and Devaux, P. E (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci USA, 81, 3751–3755.PubMedCrossRefGoogle Scholar
  118. Shounan, Y, Feng, X. and O’Connell, R J. (1998) Apoptosis detection by annexin V binding: a novel method for the quantitation of cell-mediated cytotoxicity. J Immunol Methods, 217, 61–70.PubMedCrossRefGoogle Scholar
  119. Shvedova, A. A., Tyurina, Y. Y, Tyurin, V. A., Kikuchi, Y, Kagan, V. E. and Quinn, R J. (2001) Quantitative analysis of phospholipid peroxidation and antioxidant protection in live human epidermal keratinocytes. Biosci Rep, 21, 33–43.PubMedCrossRefGoogle Scholar
  120. Simopoulos, A. R, Leaf, A. and Salem, N., Jr. (2000) Workshop statement on the essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids, 63, 119–121.PubMedCrossRefGoogle Scholar
  121. Singer, W. D., Brown, H. A. and Sternweis, R. C. (1997) Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem, 66, 475–509.PubMedCrossRefGoogle Scholar
  122. Siskind, L. J., Kolesnick, R. N. and Colombini, M. (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem, 277, 26796–26803.PubMedCrossRefGoogle Scholar
  123. Sleight, R. and Kent, C. (1983) Regulation of phosphatidylcholine biosynthesis in mammalian cells. II. Effects of phospholipase C treatment on the activity and subcellular distribution of CTP:phosphocholine cytidylyltransferase in Chinese hamster ovary and LM cell lines. JBiol Chem, 258, 831–835.Google Scholar
  124. Smit, J. J., Schinkel, A. H., Oude Elferink, R. P., Groen, A. K., Wagenaar, E., van Deemter, L., Mol, C. A., Ottenhoff, R., van der Lugt, N. M., van Roon, M. A. et al. (1993) Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell, 75, 451–462.PubMedCrossRefGoogle Scholar
  125. Song, C., Satoh, T., Edamatsu, H., Wu, D., Tadano, M., Gao, X. and Kataoka, T. (2002) Differential roles of Ras and Rapl in growth factor-dependent activation of phospholipase C epsilon. Oncogene, 21, 8105–8113.PubMedCrossRefGoogle Scholar
  126. Sonoki, S. and Ikezawa, H. (1976) Effect of phospholipase C hydrolysis of membrane phospholipids on acyltransferase systems in rat liver microsomes. J Biochem (Tokyo), 80, 1233–1239.Google Scholar
  127. Sugars, J. M., Cellek, S., Manifava, M., Coadwell, J. and Ktistakis, N. T. (2002) Hierarchy of membrane-targeting signals of phospholipase D1 involving lipid modification of a pleckstrin homology domain. JBiol Chem, 277, 29152–29161.CrossRefGoogle Scholar
  128. Sugiura, T., Masuzawa, Y, Nakagawa, Y. and Waku, K. (1987) Transacylation of lyso platelet-activating factor and other lysophospholipids by macrophage microsomes. Distinct donor and acceptor selectivities. JBiol Chem, 262, 1199–1205.Google Scholar
  129. Swinnen, J. V., Van Veldhoven, R R, Timmermans, L., De Schrijver, E., Brusselmans, K., Vanderhoydonc, E, Van de Sande, T., Heemers, H., Heyns, W. and Verhoeven, G. (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun, 302, 898–903.PubMedCrossRefGoogle Scholar
  130. Tang, X., Halleck, M. S., Schlegel, R. A. and Williamson, P. (1996) A subfamily of P-type ATPases with aminophospholipid transporting activity. Science, 272, 1495–1497.PubMedCrossRefGoogle Scholar
  131. Thomas, K., Rutter, A., Suller, M., Harwood, J. and Lloyd, D. (1998) Oxygen induces fatty acid (n-6)-desaturation independently of temperature in Acanthamoeba castellanii. FEBS Lett, 425, 171–174.PubMedCrossRefGoogle Scholar
  132. Tint, G. S. (1993) Cholesterol defect in Smith-Lemli-Opitz syndrome. Am JMed Genet, 47, 573–574.CrossRefGoogle Scholar
  133. Tou, J. S. (1981) Activation of the metabolism of the fatty acyl group in granulocyte phospholipids by phorbol myristate acetate. Biochim BiophysActa, 665, 491–497.CrossRefGoogle Scholar
  134. van Deenen, L. L. M. and de Gier, J. (1974). The red blood cell. New York, academic press.Google Scholar
  135. van Helvoort, A., Smith, A. J., Sprong, H., Fritzsche, I., Schinkel, A. H., Borst, P. and van Meer, G. (1996) MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell, 87, 507–517.PubMedCrossRefGoogle Scholar
  136. Veldman, R J., Maestre, N., Aduib, O. M., Medin, J. A., Salvayre, R. and Levade, T. (2001) A neutral sphingomyelinase resides in sphingolipid-enriched microdomains and is inhibited by the caveolin-scaffolding domain: potential implications in tumour necrosis factor signalling. Biochem J, 355, 859–868.PubMedGoogle Scholar
  137. Venkataraman, K. and Futerman, A. H. (2000) Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol, 10, 408–412.PubMedCrossRefGoogle Scholar
  138. Verkleij, A. J., Zwaal, R. F., Roelofsen, B., Comfurius, P., Kastelijn, D. and van Deenen, L. L. (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim BiophysActa, 323, 178–193.PubMedCrossRefGoogle Scholar
  139. Vieu, C., Terce, E, Chevy, E, Rolland, C., Barbaras, R., Chap, H., Wolf, C., Perret, B. and Collet, X. (2002) Coupled assay of sphingomyelin and ceramide molecular species by gas liquid chromatography. JLipid Res, 43, 510–522.Google Scholar
  140. Virtanen, J. A., Cheng, K. H. and Somerharju, P. (1998) Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc Natl Acad Sci USA, 95, 49M - 4969.CrossRefGoogle Scholar
  141. Wada, H., Gombos, Z. and Murata, N. (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid denaturation. Nature, 347, 200–203.PubMedCrossRefGoogle Scholar
  142. Wang, D., Feng, J., Wen, R., Marine, J. C., Sangster, M. Y, Parganas, E., Hoffineyer, A., Jackson, C. W, Cleveland, J. L., Murray, P. J. et al. (2000) Phospholipase Cgamma2 is essential in the functions of B cell and several Fc receptors. Immunity, 13, 25–35.PubMedCrossRefGoogle Scholar
  143. Weisinger, H. S., Vingrys, A. J., Abedin, L. and Sinclair, A. J. (1998) Effect of diet on the rate of depletion of n-3 fatty acids in the retina of the guinea pig. JLipid Res, 39, 1274–1279.Google Scholar
  144. Weisinger, H. S., Vingrys, A. J., Bui, B. V. and Sinclair, A. J. (1999) Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Invest Ophthalmol Vis Sci, 40, 327–338.PubMedGoogle Scholar
  145. Wilde, J. I. and Watson, S. P. (2001) Regulation of phospholipase C gamma isoforms in haematopoietic cells: why one, not the other? Cell Signal, 13, 691–701.PubMedCrossRefGoogle Scholar
  146. Willems, G. M., Janssen, M. P., Comfurius, P., Galli, M., Zwaal, R. F. and Bevers, E. M. (2000) Competition of annexin V and anticardiolipin antibodies for binding to phosphatidylserine containing membranes. Biochemistry, 39, 1982–1989.PubMedCrossRefGoogle Scholar
  147. Williamson, P., Bevers, E. M., Smeets, E. F., Comfurius, P., Schlegel, R. A. and Zwaal, R. F. (1995) Continuous analysis of the mechanism of activated transbilayer lipid movement in platelets. Biochemistry, 34, 10448–10455.PubMedCrossRefGoogle Scholar
  148. Williamson, P., Christie, A., Kohlin, T., Schlegel, R. A., Comfurius, P., Harmsma, M., Zwaal, R. F. and Bevers, E. M. (2001) Phospholipid scramblase activation pathways in lymphocytes. Biochemistry, 40, 8065–8072.PubMedCrossRefGoogle Scholar
  149. Winnow, T. E., Hilpert, J., Armstrong, S. A., Rohlmann, A., Hammer, R. E., Burns, D. K. and Herz, J. (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA, 93, 8460–8464.CrossRefGoogle Scholar
  150. Wolf, C., Colard-Torquebiau, O., Bereziat, G. and Polonovski, J. (1977) [Phospholipase A2 of the adipocyte cytoplasmic membrane]. Biochimie, 59, 115–118.Google Scholar
  151. Yen, C. L., Mar, M. H., Craciunescu, C. N., Edwards, L. J. and Zeisel, S. H. (2002) Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells. JNutr, 132, 1840–1847.Google Scholar
  152. Yen, C. L., Mar, M. H. and Zeisel, S. H. (1999) Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. Faseb J, 13, 135–142.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Claude Wolf
    • 1
  • Peter J. Quinn
    • 2
  1. 1.Biochemistry Department, Mass Spectrometry Laboratory, INSERM U. 538Faculté de Médecine Saint AntoineParisFrance
  2. 2.Life Sciences Department, BiochemistryKing’s College LondonLondonUK

Personalised recommendations