Membrane Receptor Mapping: The Membrane Topography of FcεRI Signaling

  • Janet M. Oliver
  • Janet R. Pfeiffer
  • Zurab Surviladze
  • Stanly L. Steinberg
  • Karin Leiderman
  • Margaret L. Sanders
  • Carla Wofsy
  • Jun Zhang
  • Hong You Fan
  • Nicholas Andrews
  • Scott Bunge
  • Timothy J. Boyle
  • Paul Kotula
  • Bridget S. Wilson
Part of the Subcellular Biochemistry book series (SCBI, volume 37)

Abstract

Ligand binding to membrane receptors initiates cascades of biochemical events leading to physiological responses. Hundreds of proteins and lipids are implicated in signaling networks and programs in genomics and proteomics are continuously adding new components to the signaling “parts lists”. Here, we generate high resolution maps of signaling networks using cytoplasmic face-up membrane sheets that can be labeled with inununogold probes (3–10 nm) and imaged in the transmission electron microscope. Our model system is the mast cell and we focus on mapping the topography of the high affinity IgE receptor, FcεRI, its associated tyrosine kinases, Lyn and Syk, and the signaling proteins that propagate signals from these kinases. Crosslinked receptors and their signaling partners segregate during signaling to multiple, dynamic membrane domains, including a transient FcεRI-Lyn domain and at least two other distinct domains, one characterized by the presence of receptor, Syk and multiple signaling proteins, but not Lyn (primary signaling domains), and one characterized by the presence of LAT and PLCγl but not receptor (secondary signaling domains). PI 3-kinase associates with both primary and secondary signaling domains and may help to recruit specific signaling proteins through the local remodeling of inositol phospholipids. The lipid raft markers, GM1 and Thy-1, fail to localize in native membrane sheets either with each other or with signaling domains. We introduce new probes to localize multiple signaling molecules on the same membrane sheet and new computational tools to capture and analyze their topographical relationships. In the future, we expect that high resolution maps of signaling networks will be integrated with chemical kinetic analyses, with cell fractionation data and with a range of real-time fluorescence measurements, into mathematical models with power to predict mechanisms that regulate the efficiency, specificity, amplitude and duration of signaling pathways.

Keywords

Mast Cell Gold Particle Lipid Raft Cholera Toxin Signaling Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, J.H. and Suvaci, E. 2000. Morphological control of particles. Current Opinion in Colloid and Interface. Science 5: 160–167.Google Scholar
  2. Anderson, R.G.W. and Jacobson, K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts and other lipid domains. Science 296: 1821–1825.PubMedCrossRefGoogle Scholar
  3. Barker, S.A., Caldwell, K.K., Pfeiffer, J.R., Wilson, B.S. 1998. Wortmannin-sensitive phosphorylation, translocation and activation of PLCγi, but not PLCγ2, in antigen-stimulated RBL-2H3 mast cells. Mol. Biol. Cell 9: 483–496.Google Scholar
  4. Barker, S.A., Lujan, D., Wilson, B.S. 1999. Multiple roles for PI 3-kinase in the regulation of PLCy activity and Cat+ mobilization in antigen-stimulated mast cells. J. Leukocyte Biol. 65: 321–329.PubMedGoogle Scholar
  5. Berlin, R.D., Oliver, J.M., Ukena, T.E., Yin, H.H. 1974. Control of cell surface topography. Nature 247: 45–46.PubMedCrossRefGoogle Scholar
  6. Blank, U., Ra, C., Miller, L., White, K., Metzger H., and Kinet, J-P. 1989. Complete structure and expression in transfected cells of high-affinity IgE receptor. Nature 337: 187–189.PubMedCrossRefGoogle Scholar
  7. Brown, D.A., London, E. 2000. Structure and function of sphingolipid and cholesterol-rich membrane rafts. J. Biol. Chem. 275: 17221–17224.Google Scholar
  8. Bunge, S.D., Krueger, K.M., Boyle, T.J., Rodriguez, M.A., Headley T.J. and Colvin V.L. 2003a. Synthesis of coinage-metal nanoparticles from mesityl precursors. J. Materials Chem. in press.Google Scholar
  9. Bunge, S.D., Krueger, K.M., Boyle, T.J, Rodriguez, M.A., Headley, T.J. and Colvin, V.L.b. Growth and morphology of cadmium chalcogenides: the synthesis of nanorods, tetrapods and spheres from CdO and Cd(O2CCH3)2. J. Materials Chem. 13: 1705–1709.Google Scholar
  10. Cressie, N.A.C. 1993. Statistics for Spatial Data, New York: Wiley.Google Scholar
  11. Edidin, M., 1997. Lipid microdomains in cell-surface membranes. Current Opin. Struct. Biol. 7: 528–532.CrossRefGoogle Scholar
  12. Edidin, M. 2001. Shrinking patches and slippery rafts: scales of domains in the plasma membrane. TRENDS in Cell Biology 11: 492–496.PubMedCrossRefGoogle Scholar
  13. Eiseman, E., Bolen, J. 1992. Engagement of the high affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355: 78–80.PubMedCrossRefGoogle Scholar
  14. Faeder, J.R., Hlavacek, W.S., Reischl, I., Blinov, M.L., Metzger, H., Redondo, A., Wofsy, C. and Goldstein, B. 2003. Investigation of early events in FIERI-mediated signaling using a detailed mathematical model J. Immunol. 170: 3769–3781.PubMedGoogle Scholar
  15. Fan, IL, Boyle, T.J., Simon, T., Molloy, K. and Brinker, C.J. 2003. Surfactant-assisted self-assembly of ordered gold nanocrystals/silica nanostructures and their electrical properties. Submitted for publication.Google Scholar
  16. Field, K.A., Holowka, D. and Baird, B. 1995. FcERI-mediated recruitment of p53/561 to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. USA 92: 9201–9205.PubMedCrossRefGoogle Scholar
  17. Field, K.A., Holowka, D. and Baird, B. 1997. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J. Biol. Chem. 272: 4276–4280.PubMedCrossRefGoogle Scholar
  18. Field, K.A., Holowka, D. and Baird, B. 1999. Structural aspects of the association of FceRI with detergent-resistant membranes. J. Biol. Chem. 274: 1753–1758.PubMedCrossRefGoogle Scholar
  19. Freemantle, M. 2001. Nanoparticle shape control. Chemical and Engineering News 79: 10.Google Scholar
  20. Fridriksson, E.K., Shipkova, P.A., Sheets, E.D., Holowka, D., Baird, B. and McLafferty, F.W. 1999. Quantitative analysis of phospholipids in functionally important membrane domains from RBL-2H3 mast cells using tandem high-resolution mass spectrometry. Biochemistry 38: 8056–8063.PubMedCrossRefGoogle Scholar
  21. Friedrichson, T. and Kurzchalia, T. 1998. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394: 802–805.PubMedCrossRefGoogle Scholar
  22. Fu, X.Y., Wang, Y., Wu, N.Z., Gui, L.L. and Tang, Y.Q. 2002. Shape-control of platinum nanoparticles stabilized by oxalate. Acta Chimica Sinica 60: 1324–1330.Google Scholar
  23. Ge, M., Field, K.A., Aneja, R., Holowka, D., Baird, B. and Freed, J.H. 1999. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophysical Journal 77: 925–933.PubMedCrossRefGoogle Scholar
  24. Goldstein, B. and Wofsy, C. 1994. Aggregation of cell surface receptors. Lectures on Mathematics in the Life Sciences 24: Cell Biology. Ed. B. Goldstein and C. Wofsy. Providence RI: American Mathematical Society, 109–135.Google Scholar
  25. Haase, P. 1995. Spatial pattern analysis in ecology based on Ripley’s K-function: Introduction and methods of edge correction. Journal of Vegetation Science 6: 575–582.CrossRefGoogle Scholar
  26. Hurley, J.H. and Meyer, T. 2001. Subcellular targeting by membrane lipids. Current Opinion in Cell Biology 13: 146–152.PubMedCrossRefGoogle Scholar
  27. Hutchcroft, J.E., Geahlen, R.L., Deanin, G.G. and Oliver, J.M. 1992. FcERI-mediated tyrosine phosphorylation and activation of the 72 kDa protein-tyrosine kinases, PTK72, in RBL-2H3 rat tumor mast cells. Proc. Natl. Acad. Sci. 89: 9107–9111.Google Scholar
  28. Iino, R. and Kusumi, A. 2001. Single-fluorophore dynamic imaging in living cells. J. Fluorescence 11: 187–195.CrossRefGoogle Scholar
  29. Ilangumaran, S., Arni, S., van Echten-Deckert, G., Borisch, B. and Hoesli, D.C. 1999. Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell. 10: 891–905.Google Scholar
  30. Jacobson, K., and Dietrich, C. 1999. Looking at lipid rafts? Trends Cell Biol. 9: 87–91.PubMedCrossRefGoogle Scholar
  31. Jain, A.J. and Dubes, R.C. 1988. Algorithms for Clustering. Prentice Hall, Englewood Cliffs, New Jersey (1988).Google Scholar
  32. Jain, A.K., Murty, M.N. and Flynn, P.J. 1999. Data clustering: a review. ACM Computing Surveys 31: 264–323.CrossRefGoogle Scholar
  33. Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C. and Zheng, J.G. 2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294: 1901–1903.PubMedCrossRefGoogle Scholar
  34. Kenworthy, A.K., Petranova, N., Edidin, M. 2000. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11: 1645–1655.Google Scholar
  35. Kotula, P.G., Keenan, M.R. and Michael, J.R. 2003. Automated analysis of SEM X-ray spectral images. A powerful new microanalysis tool. Microsc. Microanal. 9: 1–17.Google Scholar
  36. Lara M., Ortega, E., Pecht, I., Pfeiffer, J.R., Martinez, A.M., Lee, R.J., Surviladze, Z., Wilson, B.S. and Oliver, J.M. 2001. Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcERI dimers. J. Immunol. 167: 4329–4337.PubMedGoogle Scholar
  37. March, J. 1977. Advanced Organic Chemistry: Reactions, Mechanisms and Structure (2nd ed) McGraw-Hill Book Co (New York) pp 748–749.Google Scholar
  38. Mayor, S. and Maxfield, F.R. 1995. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent extraction. Mol. Biol. Cell 6: 929–944.Google Scholar
  39. Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M. and He, H.T. 1998. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17: 5334–5348.PubMedCrossRefGoogle Scholar
  40. Murray, C.B., Kagan, C.R. and Bawendi, M.G. 2000. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science 30: 545–610.CrossRefGoogle Scholar
  41. Niemeyer, C.M. 2001. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40: 4128–4158.Google Scholar
  42. Nin, G.L., Chang, Y.F., Liu, Y.L., Teng, E and Lin, Y.A. 2002. Shape-controlled synthesis of alumina nanoparticles by carboxy-containing organic molecules. Chemical Journal of Chinese Universities-Chinese 23: 345–348.Google Scholar
  43. Oliver, J.M., Ukena, T.E., Berlin, R.D. 1974. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc. Nat. Acad. Sci. USA 71: 394–398.Google Scholar
  44. Oliver, J.M. and Berlin, R.D. 1983. Surface and cytoskeleton events regulating leukocyte membrane topography. Sem. Hematol. 20: 282–304.Google Scholar
  45. Parolini, I., Topa, S., Sorice, M., Pace, A., Ceddia, A., Montesoro, E., Pavan, A., Lisanti, M.P., Peschle, C., Sargiacomo, M. 1999. Phorbol ester-induced disruption of the CD4-Lck complex occurs within a detergent-resistant microdomain of the plasma membrane - Involvement of the translocation of activated protein kinase C isoforms. J. Biol. Chem. 274: 14176–14187.Google Scholar
  46. Pawson, T. and Nash, P. 2003. Assembly of cell regulatory systems through protein interaction domains. Science 300: 445–452.PubMedCrossRefGoogle Scholar
  47. Pfeiffer, J.R., Deanin, G.G., Seagrave, J.C., Davis, B.H., Oliver, J.M. 1985. Membrane and cytoskeletal changes associated with IgE-mediated serotonin release in rat basophilic leukemia cells. J. Cell Biol. 101: 2145–2155.PubMedCrossRefGoogle Scholar
  48. Pfeiffer, J.R., Oliver, J.M. and Wilson, B.S. 2002. Observing signal transduction, endocytosis and degranulation by immunogold labeling and transmission electron microscopy on membrane sheets. Am. Biotech. Methods. 20: 18–22.Google Scholar
  49. Philimonenko, A.J., Janacek, J. and Hozak, P. 2000. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J Struct. Biol. 132: 201–210.PubMedCrossRefGoogle Scholar
  50. Pralle, A., Keller, P., Florin, E-L., Simons, K. and Hörber, J.K.H. 2000. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148: 997–1007.PubMedCrossRefGoogle Scholar
  51. Prior, I.A., Muncke, C., Parton, R.G. and Hancock, J.F. 2003. Direct visualization of ras proteins in spatially distinct cell surface microdomains. J Cell Biol 1690: 165–170.CrossRefGoogle Scholar
  52. Rao, N., Dodge, I. and Band, H. 2002. The Cbl family of ubiquitin ligases: critical negative regulators of tyrosine kinase signaling in the immune system. J. Leukoc. Biol. 71: 753–763.PubMedGoogle Scholar
  53. Reed, R.A., Mattai, K. and Shipley, G.G. 1987. Interaction of cholera toxin with ganglioside GM1 receptors in supported lipid monolayers. Biochemistry 26: 824–832PubMedCrossRefGoogle Scholar
  54. Ribi, H.O., Ludwig, D.S., Mercer, K.L., Schoolnik, G.K. and Kornberg, R.D. 1988. 3-Dimensional structure of cholera toxin penetrating a lipid membrane. Science 239: 1272–1276.Google Scholar
  55. Saitoh, S., Arudchandran, R., Manetz, T.S., Zhang, W, Sommers, C.L., Love, P.E., Rivera, J. and Samelson, L.E. 2000. LAT is essential for FccRI-mediated mast cell activation. Immunity 12: 525–535.PubMedCrossRefGoogle Scholar
  56. Sanan, D.A., Anderson, R.G.W. 1991. Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. J. Histochem. Cytochem. 39: 1017–1024.Google Scholar
  57. Sanders, M.L. 1996. Characterizing molecular aggregation on cell surfaces from spatial point patterns. PhD Thesis. Department of Mathematics and Statistics, University of New Mexico.Google Scholar
  58. Schade, A.E. and Levine, A.D. 2002. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: A mechanism for regulating the initiation of TCR signal transduction. J. Immunol. 168: 2233–2239.Google Scholar
  59. Seagrave, J.C., Pfeiffer, J.R., Wofsy, C., Oliver, J.M. 1991. The relationship of IgE receptor topography to secretion in RBL-2H3 mast cells. J. Cell Phys. 148: 139–151.CrossRefGoogle Scholar
  60. Schuck S., Honsho, M., Ekroos, K., Shevchenko, A. and Simons, K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA. 100: 5795–5800.PubMedCrossRefGoogle Scholar
  61. Simons, K., Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387: 569–572.PubMedCrossRefGoogle Scholar
  62. Singer, S.J. and Nicolson, G.L. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731.PubMedCrossRefGoogle Scholar
  63. Stauffer, T.P. and Meyer, T. 1997. Compartmentalized IgE receptor-mediated signal transduction in living cells. J. Cell Biol. 139: 1447–1454.PubMedCrossRefGoogle Scholar
  64. Stoyan, D., Kendall, W.S. and Mecke, J. 1995. Stochastic Geometry and its Applications. Wiley Series in Probability and Statistics. Wiley, Chichester, UK.Google Scholar
  65. Stump, R.E, Pfeiffer, J.R., Schneebeck, M.C., Seagrave, J.C. and Oliver, J.M. 1989. Mapping gold-labeled receptors on cell surfaces by backscattered electron imaging and digital image analysis. Studies on the IgE receptor on mast cells. Am. J. Anat. 185: 128–141.Google Scholar
  66. Surviladze, Z., Drâberovâ, L., Kubínovâ, L., Drdber, P. 1998. Functional heterogeneity of Thy-1 membrane microdomains in rat basophilic leukemia cells. Eur. J. Immunol. 28: 1847–1858.Google Scholar
  67. Surviladze, Z., Drâberovâ, L., Kovârovd, L., Boubelik, M. and DrAber, P. 2001. Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31: 1–10.Google Scholar
  68. Teranishi, T., Kurita, R. and Miyake, M. 2000. Shape control of Pt nanoparticles. Journal of Inorganic and Organometallic Polymers 10: 145–156.CrossRefGoogle Scholar
  69. Teruel, M.N. and Meyer, T. 2000. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103: 181–184.PubMedCrossRefGoogle Scholar
  70. Varma, R. and Mayor, S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394: 798–801.PubMedCrossRefGoogle Scholar
  71. Wilson, B.S., Pfeiffer, J.R. and Oliver, J.M. 2000. Observing FceRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149: 1131–1142.PubMedCrossRefGoogle Scholar
  72. Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. and Oliver, J.M. 2001. High resolution mapping of mast cell membranes reveals primary and secondary domains of FceRI and LAT. J. Cell Biol. 15: 645–658.CrossRefGoogle Scholar
  73. Wilson, B.S. and Oliver, J.M. 2001. Effector roles of IgE antibodies: Targeting allergen to the high affinity IgE receptor for FceRI-dependent signaling and antigen presentation. In: B. Zweiman and L.B. Schwartz (Eds), Inflammatory Mechanisms in Allergic Diseases. Marcel Dekker, New York. pp 197–232.Google Scholar
  74. Wilson, B.S., Pfeiffer, J.R. and Oliver, J..M. 2002. FceRI signaling observed from the inside of the mast cell membrane. Mol. Immunol. 38: 1259–1268.PubMedCrossRefGoogle Scholar
  75. Wofsy, C., Sanders, M.L., Donahoe, G.W., Pujol, M. and Oliver, J.M. 1995. Quantifying IgE receptor aggregation from SEM-immunocytology. Microscopy and Microanalysis 1: 782–784.Google Scholar
  76. Zhang, J., Leiderman, K., Wilson, B.S., Oliver, J.M. and Steinberg, S.L. 2003. The acquisition and analysis of nanoparticle data. Ms in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Janet M. Oliver
    • 1
  • Janet R. Pfeiffer
    • 1
  • Zurab Surviladze
    • 1
  • Stanly L. Steinberg
    • 2
  • Karin Leiderman
    • 2
  • Margaret L. Sanders
    • 2
  • Carla Wofsy
    • 2
  • Jun Zhang
    • 3
  • Hong You Fan
    • 4
  • Nicholas Andrews
    • 4
  • Scott Bunge
    • 4
  • Timothy J. Boyle
    • 4
  • Paul Kotula
    • 5
  • Bridget S. Wilson
    • 1
  1. 1.Department of PathologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Computer ScienceUniversity of New MexicoAlbuquerqueUSA
  4. 4.Advanced Material LaboratorySandia National LaboratoriesAlbuquerqueUSA
  5. 5.Materials Characterization Department, Materials and Process CenterSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations