Alternative Cytokines in the Immunoregulation of the Human B Cell Cycle

  • John H. Kehrl
  • Anthony S. Fauci


A variety of soluble factors have been described which regulate the growth and differentiation of human B lymphocytes in vitro. Several of these factors were orginally recognized by their activity in assays of B cell function, for example IL-4, BSF-2, and BCGF.1–4 In contrast, we have been studying the effects on B cell function of three factors originally described to influence the function of cell types distinct from B cells. These three factors are Transforming Growth Factor-beta (TGF-ß), orginally described to induce certain adherent non-neoplastic cells to express a transformed phenotype and to undergo anchorage independent growth5; interleukin-2 (IL-2), first recognized to promote the growth of T lymphocytes6; and Tumor necrosis factors, first identified by their cytotoxic or cytostatic effects against certain tumor cell lines7. Each of these factors have been found to have significant regulatory effects on the growth and differentiation of human B cells in vitro.


Cell Differentiation Factor Inert Form Significant Regulatory Effect Staphylococcus Aureus Cowan Human Tumor Necrosis Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.E. Paul, and J. Ohara, B-cell stimulatory factor-1/interleukin 4. Annu. Rev. Immunol 4:429 (1987).Google Scholar
  2. 2.
    T. Kishimoto, T. Hirano, H. Kikutani, and A. Muraguchi, Delineation of human B cell differentiation: immunological and molecular characterization of human B cell differentiation factor (BSF-2). Adv. Exp. Med. Biol 213:177 (1987).Google Scholar
  3. 3.
    J.L. Butler, A. Muraguchi, H.C. Lane, and A.S. Fauci, Development of a human T-T cell hybridoma secreting B cell growth factor. J. Exp. Med 157:60 (1983).Google Scholar
  4. 4.
    J.L. Ambrus, Jr., C.H. Jurgensen, E.J. Brown, and A.S. Fauci, Purification to homogeneity of a high molecular weight human B cell growth factor, demonstration of specific binding to activated B cells, and development of a monoclonal antibody to the factor. J. Exp. Med 162:1319 (1985).Google Scholar
  5. 5.
    D.A. Morgan, F.W. Ruscetti, and R.C. Gallo, Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193: 1007 (1976).Google Scholar
  6. 6.
    E.A. Carswell, L.J. Old, R.L. Kassel, S. Green, N. Fiore, and B. Williamson, an endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 72:3666 (1975).Google Scholar
  7. 7.
    A.B. Roberts, C.A. Frolik, M.A. Anzano, and M.B. Sporn, Transforming growth factors from neoplastic and nonneoplastic tissues. Fed. Proc 42:2621 (1983).Google Scholar
  8. 8.
    R.K. Assoian, A. Komoriya, C.A. Meyers, and M.B. Sporn, Transforming growth factor-ß in human platelets: identification of a major storage site, purification, and characterization. J. Biol. Chem 258:7155 (1983).Google Scholar
  9. 9.
    C.A. Frolik, L.L. Dart, C.A. Meyers, D.M. Smith, and M.B. Sporn, Purification and initial characterization of a type ß transforming growth factor from human placenta. Proc. Natl. Acad. Sci. USA 80:3676 (1983).Google Scholar
  10. 10.
    A. Roberts, M. Anzano, C. Meyers, J. Wideman, R. Blacher, Y.E. Pan, S. Stein, S.R. Lehrman, J.M. Smith, L.C. Lamb, and M.B. Sporn, Purification and properties of a type ß transforming growth factor from bovine kidney. Biochemistry 22: 5692 (1983).Google Scholar
  11. 11.
    R. Derynck, J.A. Jarrett, E.Y. Chen, D.H. Eaton, J.R. Bell, R.K. Assoian, A.B. Roberts, M.B. Sporn, and D.V. Geoddel, Human transforming growth factor-ß complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701 (1985).Google Scholar
  12. 12.
    S. Cheifetz, J.A. Weatherbee, M.L.-S. Tsang, J.K. Anderson, J.E. Mole, R. Lucas, and J. Massagué, The transforming growth factor-ß system, a complex pattern of cross-reactive ligands and receptors. Cell. 48: 409 (1987).PubMedCrossRefGoogle Scholar
  13. P.R. Seyedin, P.R. Segarini, D.M. Rosen, A.Y. Thompson, H. Bentz, and J. Graycor, Cartilage inducing factor-ß is a unique protein structurally and functionally related to transforming growth factor-ß. J. Biol. Chem 262:1946 (1987).Google Scholar
  14. 14.
    A.B. Roberts, and M.B. Sporn, Transforming growth factor-ß. Adv. Cancer Res 1988 in press.Google Scholar
  15. J.H. Kehrl, L.M. Wakefield, A.B. Roberts, S. Jakowlew, M. Alvarez-Mon, R. Derynck, M.B. Sporn, and A.S. Fauci, Production of transforming growth factor-ß by human T lymphocytes and its potential role in the regulation of T cell growth. J. Exp. Med 163:1037 (1986).Google Scholar
  16. J.H. Kehrl, A.B. Roberts, L.M. Wakefield, S. Jakowlew, M.B. Sporn, and A.S.Fauci, Transforming growth factor-ß is an important immunomodulatory protein for human B lymphocytes. J. Immunol 137:3855 (1987).Google Scholar
  17. A.H. Rook, J.H. Kehrl, L.M. Wakefield, A.B. Roberts, M.B. Sporn, D.B. Burlington, H.C. Lane, and A.S. Fauci, Effects of transforming growth factor-ß on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J. Immunol 136:3916 (1986).Google Scholar
  18. G. Lee, L.R. Elingsworth, S. Gillis, R. Wall, and P.W. Kincade, ß-transforming growth factors are potential regulators of B lymphopoiesis. J. Exp. Med 166:1290 (1987).Google Scholar
  19. G.E. Ranges, I.S. Figari, T. Espevik, and M.A. Palladino, Jr., Inhibition of cytotoxic T cell development by transforming growth factor ß and reversal by recombinant tumor necrosis factor a. J. Exp. Med 166:991 (1987).Google Scholar
  20. H.K. Blomhoff, E. Smeland, A.S. Mustafa, T. Godai, and R. Ohlsson, Epstein-Barr virus mediates a switch in responsiveness to transforming growth factor, type ß, in cells of the B cell lineage, Eur. J. Immunol 17:299 (1987).Google Scholar
  21. D.A. Lawrence, R. Pircher, C. Kryceve-Martinerie, and P. Jullien, Normal embryo fibroblasts release transforming growth factors in a latent form. J. Cell. Physiol 121:184 (1984).Google Scholar
  22. 22.
    R. Pircher, D.A. Lawrence, and P. Jullien, Latent ß-transforming growth factor in non-transformed and Kirsten sarcoma virus-transformed normal rat kidney cells. Cancer Res 44: 5538 (1984).Google Scholar
  23. D.A. Lawrence, R. Pircher, and P. Jullien, Conversion of a high molecular weight latent ß-TGF from chicken embryo fibroblasts into a low molecular weight active ß-TGF under acidic conditions. Biochem. Bionhvs. Res. Comm 133:1026 (1985).Google Scholar
  24. 24.
    D. Pennica, G.E. Nedwin, J.S. Hayflick, P.H. Seeburg, R. Derynck, M.A. Palladino, W.J. Kohr, B.B. aggarwal, and D.V. Goeddel, Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312: 724 (1984).Google Scholar
  25. 25.
    P.W. Gray, B.B. Aggarwal, C.V. Benton, T.S. Bringman, W.J. Henzel, J.A. Jarrett, D.W. Leung, B. Moffat, P. Ng, L.P. Svedersky, M.A. Palladino, and G.E. Nedwin, Cloning and expression of cDNa for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature 312: 721 (1984).Google Scholar
  26. 26.
    B. Beutler, A. Cerami, Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 320: 584 (1986).PubMedCrossRefGoogle Scholar
  27. R.J.M. Falkoff, J.L. Bulter, C.A. Dinarello, and A.S. Fauci, Direct effects of amonoclonal B cell differentiation factor and of purified interleukinn 1 on B cell differentiation. J. Immunol 133:692 (1986).Google Scholar
  28. M.K. Hoffmann, S. Koenig, R.S. Mittler, H.F. Oettgen, P. Ralph, C. Galanos, and U. Hammerling, Macrophge factor controlling differentiation of B cells. J. Immunol 122:497 (1979).Google Scholar
  29. 29.
    M.K. Hoffmann, S. Green, L.J. Old, and H.F. Oettgen, Serum containing endotoxin-induced tumor necrosis factor substitutes for helper T cells. Nature. 263: 416 (1976).PubMedCrossRefGoogle Scholar
  30. A. Muraguchi, and A.S. Fauci, Proliferative responses of normal human B lymphocytes. Development of an assay system for human B cell growth factor (BCGF). J. Immunol 129:1104 (1982).Google Scholar
  31. J.H. Kehrl, A. Miller, and A.S. Fauci, Effect of tumor necrosis factor a on mitogen-activated human B cells. J. Exp. Med 166:786 (1987).Google Scholar
  32. 32.
    J.H. Kehrl, M. Alvarez-Mon, G.A. Delsing, and A.S. Fauci, Lymphotoxin is an important T cell-derived growth factor for human B cells. Science 238: 1144 (1987).Google Scholar
  33. 33.
    B.B. Aggarwal, T.E. Eessalu, P.E. Hass, Characterization of receptors for human tumour necrosis factor and their regulation by y-IFN. Nature 318: 665 (1985).Google Scholar
  34. P. Scheurich, U. Ucer, M. Kronke, and K. Pfizenmaier, Quantification and characterization of high affinity membrane receptors for tumor necrosis factor on human leukemic cell lines. Int. J. Cancer 38:127 (1986).Google Scholar
  35. A.A. Creasey, R. Yamamoto, and C.R. Vih, A high molecular weight component of the human tumor necrosis factor receptor is associated with cytotoxicity. Proc. Natl.Acad. Sci. USA 84:3293 (1987).Google Scholar
  36. A. Muraguchi, J.H. Kehrl, D.L. Longo, D.J. Volkman, and A.S. Fauci, Tac expression on activated B cells and on a human T-cell leukemia-infected B-cell line. J. Exp. Med 161:181 (1985).Google Scholar
  37. M. Tsudo, T. Uchiyama, and H. Uchino, Expression of Tac antigen on activated normal human B cells. J. Exp. Med 160:602 (1984).Google Scholar
  38. Le thi Bich-thuy and A.S. Fauci, Direct effect of interluekin 2 on the differentiation of human B cells which have not been preactivated in vitro. Eur. J. Immunol 15:1075 (1985).Google Scholar
  39. 39.
    M. Sharon, R.D. Klausner, B.R. Cullen, R. Chizzonite, and W.J. Leonard, Novel IL-2 receptor subunit detected by cross-linking under high affiity conditions. Science 234: 859 (1986).Google Scholar
  40. 40.
    M. Tsudo, R.W. Kozak, C.K. Goldman, and T.A. Waldmann, Demonstration of a non-Tac peptide that binds interleukin 2: a potential participant in a multichain interleukin 2 receptor complex. Proc. Natl. Acad. Sci. USA 83:9694 (1986).Google Scholar
  41. 41.
    K. Teshigawara, H. Wang, K. Kato, and K.A. Smith, Interleukin 2 high-affinity receptor expression requires two distinct binding protiens. J. Exp. Med 165:223 (1987).Google Scholar
  42. 42.
    R.J. Robb, C.M. Rusk, J. Yodoi, W.C. Greene, An interleukin 2 binding molecule distinct from the Tac protein: analysis of its role in formation of high affinity receptors. Proc. Natl. Acad. Sci. USA 84:2002 (1987).Google Scholar
  43. 43.
    M. Dukovich, Y. Wano, Le thi Bich-Thuy, P. Katz, B.R. Cullen, J.H. Kehrl, and W.C. Greene, Identification of a second human interluekin-2 binding protein and its role in the assembly of the high affinity IL-2 receptor. Nature 327: 518 (1987).Google Scholar
  44. 44.
    Le thi Bich-Thuy, M. Dukovich, N.J. Peffer, A.S. Fauci, J.H. Kehrl, and W.C. Greene, Direct activation of human T cells by IL-2: the role of an IL-2 receptor distinct from the Tac protein. J. Immunol 239:1550 (1987).Google Scholar
  45. 45.
    P. Ralph, O. Saiki, D.H. Maurer, and K. Welte, IgM and IgG secretion in human B cell liens regulted by B cell-inducing factors (BIF) and phorbol ester. Immunol. Letter 7:17 (1983).Google Scholar
  46. 46.
    P. Ralph, G. Jeong, K. Welte, R. Mertelsmann, H. Rabin, L.E. Henderson, L.M. Souza, T.C. Boone, and R.J. Robb, Stimulation of immunoglobulin secretion in human B lymphocytes as a direct effect of high concentrations of IL-2. J. Immunol 133:2442 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • John H. Kehrl
    • 1
  • Anthony S. Fauci
    • 1
  1. 1.Laboratory of ImmunoregulationNational Institute of Allergy and Infectious Diseases National Institutes of HealthBethesdaUSA

Personalised recommendations