Advertisement

dc Conductivities

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

This chapter is mostly concerned with the methods for calculating the electrical conductivity. Four different methods are discussed: (1) solving the Boltzmann equation, (2) evaluating the Kubo formula for the current—current correlation function, (3) evaluating the force—force correlation function, and (4) solving the quantum Boltzmann equation. For scattering from fixed impurities they all give the same answer. For scattering by phonons two different answers are obtained. One is called the Ziman (1960) formula, and the other the Holstein (1964) formula. Two criteria are important in comparing these methods: which is the easiest to use, and which gives the most accurate answer?

Keywords

Fermi Surface Spectral Function Ward Identity Vertex Function Impurity Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, P. B., Phys. Rev. B 3, 305 (1971).ADSCrossRefGoogle Scholar
  2. Allen, P. B., Phys. Rev. Lett. 59, 1460 (1987).ADSCrossRefGoogle Scholar
  3. Argyres, P. N., and J. L. Sigel, Phys. Rev. B 9, 3197 (1974).ADSCrossRefGoogle Scholar
  4. Bass, J., Landolt-Bornstein, Neue Serie, Band 15a ( Springer-Verlag, New York, 1982 ).Google Scholar
  5. Caroli, C., R. Combescot, D., Leder-Rozenblatt, P. Nozieres, and D. Saint James, Phys. Rev. B 12, 3977 (1975).ADSCrossRefGoogle Scholar
  6. Cohen, M. H., L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8, 316 (1962).ADSzbMATHCrossRefGoogle Scholar
  7. Dynes, R. C., and J. P. Carbotte, Phys. Rev. 175, 913 (1968).ADSCrossRefGoogle Scholar
  8. Engelsberg, S., and J. R. Schrieffer, Phys. Rev. 131, 993 (1963).ADSCrossRefGoogle Scholar
  9. Feuchtwang, T. E., Phys. Rev. B 12, 3979 (1975).ADSCrossRefGoogle Scholar
  10. Fishman, R., Phys. Rev. B 39, 2994 (1989).ADSCrossRefGoogle Scholar
  11. Fleurov, V. N., and A. N. Kozlov, J. Phys. F 8, 1899 (1978).ADSCrossRefGoogle Scholar
  12. Giaever, I., and H. R. Zeller, Phys. Rev. Lett. 20, 1504 (1968).ADSCrossRefGoogle Scholar
  13. Goldhaber-Gordon, D., J. Gores, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 1, 5225 (1998).ADSCrossRefGoogle Scholar
  14. Grimvall, G., The Electron Phonon Interaction in Metals ( North-Holland, New York, 1981 ).Google Scholar
  15. Hodby, J. W, in Polarons in Ionic Crystals and Polar Semiconductors, ed. J. Devreese ( North-Holland, Amsterdam, 1972 ), pp. 389–459.Google Scholar
  16. Holstein, T., Ann. Phys. (N.Y.) 29, 410 (1964).MathSciNetADSCrossRefGoogle Scholar
  17. Howarth, D. J., and E. H. Sondheimer, Proc. R. Soc. London Ser. A 219, 53 (1953).ADSzbMATHCrossRefGoogle Scholar
  18. Huberman, M., and G. V. Chester, Adv. Phys. 24, 489 (1975).ADSCrossRefGoogle Scholar
  19. Kadanoff, L. P., and G. Baym, Quantum Statistical Mechanics ( Benjamin, New York, 1962 ).zbMATHGoogle Scholar
  20. Kittel, C., Quantum Theory of Solids (Wiley, New York, 1963) Chap. 9.Google Scholar
  21. Kubo, R., M. Toda, and N. Hashitsume, Statistical Physics II (Springer-Verlag, New York, 1985). Landauer, R., Phys. Lett. 85A, 91 (1981).CrossRefGoogle Scholar
  22. Landauer, R., J. Phys.: Cond. Matter 1, 8099 (1989).ADSCrossRefGoogle Scholar
  23. Langer, J. S., Phys. Rev. 120, 714 (1960).ADSzbMATHCrossRefGoogle Scholar
  24. Langer, J. S., Phys. Rev. 124, 997, 1003 (1961).ADSzbMATHCrossRefGoogle Scholar
  25. Langreth, D. C., Phys. Rev. 159, 717 (1967).ADSCrossRefGoogle Scholar
  26. Langreth, D. C., and L. R Kadanoff, Phys. Rev. 133, A1070 (1964).ADSCrossRefGoogle Scholar
  27. Levanda, M., and V. N. Fleurov, J Phys.: Cond. Matter 6, 789 (1994).CrossRefGoogle Scholar
  28. Mahan, G. D., Phys. Rev. 142, 366 (1966).MathSciNetADSCrossRefGoogle Scholar
  29. Mahan, G. D., J. Appl. Phys. 58, 2242 (1985).ADSCrossRefGoogle Scholar
  30. Mahan, G. D., Phys. Rep. 145, 251 (1987).ADSCrossRefGoogle Scholar
  31. Mahan, G. D., and W. Hansch, J Phys. F 13, L47 (1983)ADSCrossRefGoogle Scholar
  32. Mahan, G. D., and W. Hansch, Phys. Rev. B 28, 1902 (1983).ADSCrossRefGoogle Scholar
  33. Matthiessen, A., Rep. Br. Assoc. 32, 144 (1862).Google Scholar
  34. Migdal, A. B., Soy. Phys. JETP 7, 996 (1958).Google Scholar
  35. Opsal, J. L., B. J. Thaler, and J. Bass, Phys. Rev. Lett. 36, 1211 (1976).ADSCrossRefGoogle Scholar
  36. Prange, R. E., and L. P. Kadanoff, Phys. Rev. 134, A566 (1964).ADSCrossRefGoogle Scholar
  37. Schrieffer, J. R., D. J. Scalapino, and J. W. Wilkins, Phys. Rev. Lett. 10, 336 (1963).ADSCrossRefGoogle Scholar
  38. Segall, B., M. R. Lorenz, and R. E. Halstad, Phys. Rev. 129, 2471 (1963).ADSCrossRefGoogle Scholar
  39. Takegahara, K., and S. Wang, J. Phys. F 7, L293 (1977).ADSCrossRefGoogle Scholar
  40. Taylor, R., and A. H. Macdonald, Phys. Rev Lett. 57, 1639 (1986).ADSCrossRefGoogle Scholar
  41. Ward, J. C., Phys. Rev. 78, 182 (1950).ADSzbMATHCrossRefGoogle Scholar
  42. Zawadowski, A., Phys. Rev. 163, 341 (1967).ADSCrossRefGoogle Scholar
  43. Ziman, J. M., Electrons and Phonons (Oxford University Press, Inc., New York, 1960 ).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations