Advertisement

Homogeneous Electron Gas

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The use of diagram techniques in many-particle physics began in the early 1950s, soon after their introduction into field theory. Although these methods were applied to a variety of problems, some areas of work were more successful than others. The two areas which enjoyed early success were the homogeneous electron gas and the polaron problem. Later there were other successes such as the theories of superconductivity and superfluidity. However, the theory of the homogeneous electron gas, as it was initially understood, was worked out by many contributors during the period 1957–1958. They brought a variety of theoretical approaches to this problem, but all used diagrammatic techniques in some form. On the other hand, during the past twenty years, there has been achieved an understanding of electronelectron interactions in strongly correlated metals. This latter topic is covered in the next chapter.

Keywords

Dielectric Function Ground State Energy Correlation Energy Random Phase Approximation Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen, J., Phys. Rev. 49, 653 (1936).ADSzbMATHCrossRefGoogle Scholar
  2. Baym, G., and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Bethe, H., Ann. Phys. 5, 325 (1930).zbMATHCrossRefGoogle Scholar
  4. Brosens, E, L. E Lemmens, and J. T. Devreese, Phys. Status Solidi 81, 551 (1977).CrossRefGoogle Scholar
  5. Care, C. M., and N. H. March, Adv. Phys. 24, 101 (1975).ADSCrossRefGoogle Scholar
  6. Carr, W. J., Phys. Rev 122, 1437 (1961).ADSCrossRefGoogle Scholar
  7. Carr, W. J., and A. A. Maradudin, Phys. Rev. 133, A371 (1964).ADSCrossRefGoogle Scholar
  8. Daniel, E., and S. H. Vosko, Phys. Rev. 120, 2041 (1960).MathSciNetADSCrossRefGoogle Scholar
  9. Ehrenreich, H., and M. H. Cohen, Phys. Rev. 115, 786 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. Eisenberger, P., L. Lam, P. M. Platzman, and P. Schmidt, Phys. Rev B 6, 3671 (1972).ADSCrossRefGoogle Scholar
  11. Echenique, P. M., J. M. Pitarke, E. V. Chulkov, and A. Rubio, Chemical Physics 251, 1 (2000).ADSCrossRefGoogle Scholar
  12. Fermi, E., Z. Phys. 48, 73 (1928).ADSzbMATHCrossRefGoogle Scholar
  13. Fleszar, A., A. A. Quong, and A. G. Eguiluz, Phys. Rev. Lett. 74, 590 (1995).ADSCrossRefGoogle Scholar
  14. Flodstrom, S. A., R. Z. Bachrach, R. S. Bauer, J. C. Mcmenamin, and S. B. M. Hagstrom, J. Vac. Sci. Technol. 14, 303 (1977).ADSCrossRefGoogle Scholar
  15. Geldart, D. J. W, and R. Taylor, Can. J Phys. 48, 155, 167 (1970).ADSCrossRefGoogle Scholar
  16. Gell-Mann, M., and K. Brueckner, Phys. Rev 106, 364 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Hammerberg, J., and N. W. Ashcroft, Phys. Rev B 9, 409 (1974).ADSCrossRefGoogle Scholar
  18. Hedin, L., Phys. Rev 139, A796 (1965).ADSCrossRefGoogle Scholar
  19. Hopfield, J. J., Phys. Rev. B 2, 973 (1970).ADSCrossRefGoogle Scholar
  20. Hubbard, J., Proc. R. Soc. London Ser. A 243, 336 (1957).Google Scholar
  21. Jonson, M., J. Phys. C 9, 3055 (1976).ADSCrossRefGoogle Scholar
  22. Kimball, J. C., Phys. Rev. A 7, 1648 (1973).ADSCrossRefGoogle Scholar
  23. Kramers, H. A., reprinted in Collected Scientific Papers ( North-Holland, Amsterdam, 1956 ).Google Scholar
  24. Kravchenko, S. V., G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. Diorio, Phys. Rev. B 50, 8039 (1994).ADSCrossRefGoogle Scholar
  25. Kravchenko, S. V., W. E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and Diorio, Phys. Rev. B 51, 7038 (1995).ADSCrossRefGoogle Scholar
  26. Kronig, R., J. Opt. Soc. Am. 12, 547 (1926).ADSCrossRefGoogle Scholar
  27. Landau, L. D., and E. Lifshitz, Quantum Mechanics: Non Relativistic Theory ( Addison Wesley, Reading, Mass., 1958 ).Google Scholar
  28. Lang, N. D., and W. Kohn, Phys. Rev. B 3, 1215 (1971).ADSCrossRefGoogle Scholar
  29. Langer, J. S., and S. H. Vosko, J. Phys. Chem. Solids 12, 196 (1960).ADSCrossRefGoogle Scholar
  30. Larson, B. C., J. Z. Tischler, E. D. Isaacs, P. Zschack, A. Fleszar, and A. G. Equiluz, Phys. Rev. Lett. 77, 1346 (1996).ADSCrossRefGoogle Scholar
  31. Lindgren, L., and A. Rosen, unpublished (1970).Google Scholar
  32. Lindhard, J., K. Dan. Vidensk. Selsk Mat. Fys. Medd. 28, (8) (1954).Google Scholar
  33. Lundqvist, B. L., Phys. Status Solidi 32, 273 (1969).CrossRefGoogle Scholar
  34. Mahan, G. D., and B. E. Sernelius, Phys. Rev. Lett. 62, 2718 (1989).ADSCrossRefGoogle Scholar
  35. Mahan, G. D., Mod. Phys. Lett. 7, 13 (1993).ADSCrossRefGoogle Scholar
  36. Mao, H. K., and R. J. Hemley, Rev Mod. Phys. 66, 671 (1994).ADSCrossRefGoogle Scholar
  37. Marton, L., J. A. Simpson, H. A. Fowler, and N. Swanson, Phys. Rev 126, 182 (1962).ADSCrossRefGoogle Scholar
  38. Mihara, N., and R. D. Puff, Phys. Rev. 174, 221 (1968).ADSCrossRefGoogle Scholar
  39. Niklasson, G., Phys. Rev. B 10, 3052 (1974).ADSCrossRefGoogle Scholar
  40. Nozieres, R, Interacting Fermi Systems ( Benjamin, Reading, Mass., 1964 ), p. 287.zbMATHGoogle Scholar
  41. Nozieres, P., and D. Pines, Phys. Rev. 111, 442 (1958).ADSzbMATHCrossRefGoogle Scholar
  42. Onsager, L., L. Mittag, and M. J. Stephen, Ann. Phys. 18, 71 (1966).CrossRefGoogle Scholar
  43. Pandey, K. C., and L. Lam, Phys. Lett. 43A, 319 (1973).CrossRefGoogle Scholar
  44. Quinn, J. J., and R. A. Ferrell, Phys. Rev. 112, 812 (1958).MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. Rice, T. M., Ann. Phys. 31, 100 (1965).ADSCrossRefGoogle Scholar
  46. Ritchie, R. H., Phys. Rev. 106, 874 (1957).MathSciNetADSCrossRefGoogle Scholar
  47. Santoro, G. E., and G. E Giuliani, Phys. Rev. B 37, 4813 (1988).ADSCrossRefGoogle Scholar
  48. Sawada, K., K. A. Brueckner, N. Fukada, and R. Brout, Phys. Rev. 108, 507 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. Schneider, T., R. Brout, H. Thomas, and J. Feder, Phys. Rev. Lett. 25, 1423 (1970).ADSCrossRefGoogle Scholar
  50. Seitz, E, Modern Theory of Solids (McGraw-Hill, New York, 1940), Sec. 76.Google Scholar
  51. Sham, L. J., Phys. Rev. B 7, 4357 (1973).ADSCrossRefGoogle Scholar
  52. Sholl, C. A., Proc. Phys. Soc. London 92, 434 (1967).ADSCrossRefGoogle Scholar
  53. Siiung, K. W. K., B. E. Sernelius, and G. D. Mahan, Phys. Rev. B 36, 4499 (1987).ADSCrossRefGoogle Scholar
  54. Singwi, K. S., and M. P. Tosi, Solid State Phys. 36, 177 (1981).CrossRefGoogle Scholar
  55. Singwi, K. S., M. P. Tosi, R. H. Land, and A. Sjolander, Phys. Rev. 176, 589 (1968).ADSCrossRefGoogle Scholar
  56. Singwi, K. S., A. Sjolander, M. R. Tosi, and R. H. Land, Phys. Rev. B 1, 1044 (1970).ADSCrossRefGoogle Scholar
  57. Sueoka, O., J. Phys. Soc. Jpn. 20, 2203 (1965).ADSCrossRefGoogle Scholar
  58. Thomas, L. H., Proc. Cambridge Philos. Soc. 23, 542 (1927).ADSzbMATHCrossRefGoogle Scholar
  59. Ting, C. S., T. K. Lee, and J. J. Quinn, Phys. Rev. Lett. 34, 870 (1975).ADSCrossRefGoogle Scholar
  60. Tracy, J. C., J. Vac. Sci. Technol. 11, 280 (1974).ADSCrossRefGoogle Scholar
  61. Vashishta, E, and K. S. Singwi, Phys. Rev B 6, 875 (1972).ADSCrossRefGoogle Scholar
  62. Vignale, G., Phys. Rev B 38, 6445 (1988).ADSCrossRefGoogle Scholar
  63. Wigner, E., Phys. Rev. 46, 1002 (1934).ADSCrossRefGoogle Scholar
  64. Wigner, E., Trans. Faraday Soc. 34, 678 (1938).CrossRefGoogle Scholar
  65. Wigner, E., and E. Seitz, Phys. Rev. 43, 804 (1933); 46, 509 (1934).Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations