Advertisement

Superconductivity

  • Gerald D. Mahan
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

The theory of superconductivity was formulated by Bardeen, Cooper, and Schrieffer (1957) and is called the BCS theory. It very successfully describes the superconducting properties of weak superconductors, such as aluminum, which are weak because of the small strength of the electron—phonon interaction. Further refinements of the theory have led to the strong coupling theory of Eliashberg (1960) which describes well the properties of superconductors such as lead. The distinction between aluminum and lead is roughly determined by the value of the electron—phonon mass enhancement factor λ., as shown by McMillan (1968). The BCS theory is discussed first. It must rank as one of the great successes of many-body formalism, since the theory provides detailed agreement with experiments. This agreement is a refreshing change from most comparisons between many-body theory and experiment, where the results often depend upon vertex corrections, correlations, and computer simulations. The beauty of BCS is that it is, mathematically, a simple theory which is exceedingly accurate. The reason it works is that the basic coupling forces are weak, and mean field works well.

Keywords

Fermi Surface Tunnel Junction Electron Tunneling Josephson Current Energy Denominator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrikosov, A. A., L. R Gorkov, and I. E. Dzaloshinski, Methods of Quantum Field Theory in Statistical Physics ( Prentice-Hall, Englewood Cliffs, N.J., 1963 ).zbMATHGoogle Scholar
  2. Allen, P. B., M. L. Cohen, and D. R. Penn, Phys. Rev. B 38, 2513 (1988).ADSCrossRefGoogle Scholar
  3. Allen, R B., and B. Mitrovic, in Solid State Physics, Vol. 37, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1982 ), pp. 1–82.Google Scholar
  4. Ambegaokar, V., and A. Baratoff, Phys. Rev. Lett. 10, 486 (1962)ADSCrossRefGoogle Scholar
  5. Ambegaokar, V., and A. Baratoff, Phys. Rev. Lett. 11, 104 (1963).ADSCrossRefGoogle Scholar
  6. Baker, G. A., Jr., Essentials of Padé Approximants (Academic Press, New York, 1975 ).Google Scholar
  7. Balian, R., and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  8. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Cooper, L. N., Phys. Rev 104, 1189 (1956).ADSzbMATHCrossRefGoogle Scholar
  10. Eliashberg, G. M., Sov Phys. JETP 11, 696 (1960).Google Scholar
  11. Fiske, M. D., unpublished (1978).Google Scholar
  12. Fröhlich, H., Phys. Rev 79, 845 (1950).ADSzbMATHCrossRefGoogle Scholar
  13. Giaever, I., Phys. Rev. Lett. 5, 147, 464 (1960).ADSCrossRefGoogle Scholar
  14. Giaever, I., H. R. Hart, and K. Megerle, Phys. Rev 126, 941 (1962).ADSCrossRefGoogle Scholar
  15. Halperin, B. I., and T. M. Rice, in Solid State Physics, Vol. 21, eds. H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic Press, New York, 1968 ), p. 115.Google Scholar
  16. Han, S., K. W. Ng, E. L. Wolf, A. Millis, J. L. Smith, and Z. Fisk, Phys. Rev Lett. 57, 238 (1986).ADSCrossRefGoogle Scholar
  17. Josephson, B. D., Phys. Lett. 1, 251 (1962).ADSzbMATHCrossRefGoogle Scholar
  18. Keldysh, L. V, and Y. V. Kopaev, Sov Phys. Solid State 6, 2219 (1965).Google Scholar
  19. Kittel, C., Introduction to Solid State Physics, 3rd ed. ( Wiley, New York, 1966 ), p. 458.Google Scholar
  20. Langenberg, D. N., D. J. Scalapino, B. N. Taylor, and R. E. Eck, Phys. Rev. Lett. 15, 294 (1965).ADSCrossRefGoogle Scholar
  21. Mahan, G. D., Phys. Rev. 153, 882 (1967)ADSCrossRefGoogle Scholar
  22. Mahan, G. D., 163, 612 (1967).Google Scholar
  23. Mahan, G. D., Phys. Rev. B 56, 8322–8329 (1997).ADSCrossRefGoogle Scholar
  24. Mattis, D. C., and J. Bardeen, Phys. Rev. 111, 412 (1958).ADSzbMATHCrossRefGoogle Scholar
  25. Maxwell, E., Phys. Rev. 78, 477 (1950).ADSCrossRefGoogle Scholar
  26. Mcmillan, W L., Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  27. Mcmillan, W. L., and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).ADSCrossRefGoogle Scholar
  28. Migdal, A. B. Sov Phys. JETP 7, 996 (1958).MathSciNetGoogle Scholar
  29. Morse, R. W, and H. V. Bohm, Phys. Rev 108, 1094 (1957).ADSCrossRefGoogle Scholar
  30. Owen, C. S., and D. J. Scalapino, Physica 55, 691 (1971).ADSCrossRefGoogle Scholar
  31. Palmer, L. H., and M. Tinkham, Phys. Rev 165, 588 (1968).ADSCrossRefGoogle Scholar
  32. Parker, W H., D. N. Langenberg, A. Denenstein, and B. N. Taylor, Phys. Rev. 177, 639 (1969).ADSCrossRefGoogle Scholar
  33. Parks, R. D., ed., Superconductivity, Vols. I and II (Dekker, New York, 1969 ).Google Scholar
  34. Reynolds, C. A., B. Serin, W. H. Wright, and L. B. Nesbitt, Phys. Rev 78, 487 (1950).ADSCrossRefGoogle Scholar
  35. Rickayzen, G., Theory of Superconductivity ( Wiley-Interscience, New York, 1965 ).zbMATHGoogle Scholar
  36. Scalapino, D. J., J. R. Schrieffer, and J. W Wilkins, Phys. Rev 148, 263 (1966).ADSCrossRefGoogle Scholar
  37. Schafroth, M. R., Phys. Rev. 100, 463 (1955).MathSciNetADSCrossRefGoogle Scholar
  38. Schilling, A., M. Cantoni, J. D. Guo, and H. R. Ott, Nature, 363, 56 (1993).ADSCrossRefGoogle Scholar
  39. Schrieffer, J. R., Theory of Superconductivity (Benjamin, Reading, Mass., 1964 ).Google Scholar
  40. Shaw, W, and J. C. Swihart, Phys. Rev Lett. 20, 1000 (1968).ADSCrossRefGoogle Scholar
  41. Shekhtman, L., and L. I. Glazman, Phys. Rev. B 52, R2297 (1995).ADSCrossRefGoogle Scholar
  42. Lage, F. C., and H. A. Bethe, Phys. Rev. 71, 612 (1947).ADSzbMATHCrossRefGoogle Scholar
  43. Vidberg, H. J., and J. W. Serene, J Low Temp. Phys. 29, 179 (1977).ADSCrossRefGoogle Scholar
  44. Wollman, D. A., D. J. Van Harlingen, J. Giapintzakis, and D. M. Ginsberg, Phys. Rev Let. 74, 797 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Gerald D. Mahan
    • 1
    • 2
  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Oak Ridge National LaboratoryUSA

Personalised recommendations