Abstract

The rare earth metals are notoriously poor conductors and are thus typical transition metals in this respect. As a simple illustration we note that at room temperature the electrical resistivity of gadolinium is one hundred times that of copper. This behavior in the rare earths arises in part because these metals have three conduction electrons per atom (Ce, Eu, and Yb are exceptions) in s-d like bands, in part from crystal structure (phonon) effects, and in part because the conduction electrons are exchange coupled to the magnetic moments of the 4f electrons, so there is an additional scattering mechanism present when the 4f moments are incompletely ordered. A consequence of this s-f exchange is the indirect exchange interaction between the moments of the “deeply sequestered” 4f electrons.(1) In view of this it is not surprising that sharp excursions from ordinary transport behavior, particularly near magnetic transition temperatures, are observed in the rare earth metals.

Keywords

Electrical Resistivity Basal Plane Fermi Surface Rare Earth Metal Seebeck Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Vleck, J. H., in Electric and Magnetic Susceptibilities. Oxford University Press, London, England (1932).Google Scholar
  2. 2.
    Kasuya, T., in Magnetism, 11B ( G. T. Rado and H. Suhl, eds). Academic Press, New York (1965), p. 252.Google Scholar
  3. 3.
    Elliott, R. J., in Magnetism, 11A. Academic Press, New York (1965), p. 385.Google Scholar
  4. 4.
    Gschneidner, K. A., Jr., in The Rare Earth Alloys. Van Nostrand, Princeton, New Jersey (1961).Google Scholar
  5. 5.
    Ziman, J. M., in Electrons and Phonons. Oxford University Press, London (1960).Google Scholar
  6. 6.
    Ziman, J. M., in Principles of the Theory of Solids. Cambridge University Press, Cambridge, England (1964).Google Scholar
  7. 7.
    Wilson, A. H., in The Theory of Metals, 2nd ed. Cambridge University Press, Cambridge, England (1965).Google Scholar
  8. 8.
    Macdonald, D. K. C., in Thermoelectricity: an Introduction to the Principles. John Wiley and Sons, New York (1962).Google Scholar
  9. 9.
    Freeman, A. J., Dimmock, J. O. and Watson, R. E., in Quantum Theory of Atoms Molecules, and the Solid State ( P. O. Löwdin, ed). Academic Press, New York (1966), p. 361.Google Scholar
  10. 10.
    Klemens, P. G., Handbuck der Physik, 14, 198 (1956).Google Scholar
  11. 11.
    Schieber, M., in Crystal Growth, Suppl. J. Phys. Chem. Solids (H. S. Peiser, ed ). Pergamon Press (1967), p. 271.Google Scholar
  12. 12.
    Johansson, J., Lebech, B., Nielsen, M., Moller, B. and Mackintosh, A. R., Phys. Rev. Letters, 25, 524 (1970).CrossRefGoogle Scholar
  13. 13.
    Tonnies, J. J. and Gschneidner, K. A., Jr., “Preparation of Lanthanide Single Crystals”, J. Crystal Growth (to be published).Google Scholar
  14. 14.
    Nigh, H. E., J. Appl. Phys., 34, 3323 (1963).CrossRefGoogle Scholar
  15. 15.
    Bardeen, J., Cooper, L. N. and Schrieffer, J. R., Phys. Rev., 108, 1175 (1957).CrossRefGoogle Scholar
  16. 16.
    Freeman, A. J., Dimmock, J. O. and Watson, R. E., Phys. Rev. Letters, 16, 94 (1966).CrossRefGoogle Scholar
  17. 17.
    Mackintosh, A. R., Phys. Rev. Letters, 9, 90 (1962).CrossRefGoogle Scholar
  18. 18.
    Elliott, R. J. and Wedgwood, F. A., Proc. Phys. Soc. (London), 81, 846 (1963).Google Scholar
  19. 19.
    Miwa, H., Frog. Theoret. Phys. (Kyoto), 29, 477 (1963).Google Scholar
  20. 20.
    de Gennes, P. G. and Friedel, J., J. Phys. Chem. Solids, 4, 71 (1958).CrossRefGoogle Scholar
  21. 21.
    Dekker, A. J., J. Appl. Phys., 36, 906 (1965).CrossRefGoogle Scholar
  22. 22.
    de Gennes, P. G., Compt. Rend., 247, 1836 (1958).Google Scholar
  23. 23.
    Kasuya, T., Prog. Theoret. Phys. (Kyoto), 22, 227 (1959).Google Scholar
  24. 24.
    Brout, R. and Suhl, H., Phys. Rev. Letters, 2, 387 (1959).CrossRefGoogle Scholar
  25. 25.
    Klemens, P. G., Solid State Phys., 7, 1 (1958).CrossRefGoogle Scholar
  26. 26.
    Mendelssohn, K. and Rosenberg, H. M., Solid State Phys., 12, 223 (1961).CrossRefGoogle Scholar
  27. 27.
    Hall, P. M., Legvold, S. and Spedding, F. H., Phys. Rev., 116, 1464 (1959).CrossRefGoogle Scholar
  28. 28.
    Boys, D. W. and Legvold, S., Phys. Rev., 174, 377 (1968).CrossRefGoogle Scholar
  29. 29.
    Loucks, T. L., private communication, 1967. He estimated the ratio for Er and we have assumed a smooth variation across the heavy rare earths.Google Scholar
  30. 30.
    Alstad, J. K., Colvin, R. V. and Legvold, S., Phys. Rev., 123, 418 (1961).CrossRefGoogle Scholar
  31. 31.
    Nellis, W. J. and Legvold, S., Phys. Rev., 180, 581 (1969).CrossRefGoogle Scholar
  32. 32.
    Nigh, H. E., Legvold, S. and Spedding, F. H., Phys. Rev., 132, 1092 (1963).CrossRefGoogle Scholar
  33. 33.
    Nellis, W. J. and Legvold, S., J. Appl. Phys., 40, 2267 (1969).CrossRefGoogle Scholar
  34. 34.
    de Gennes, P. G. and Friedel, J., J. Phys. Chem. Solids, 4, 71 (1958).CrossRefGoogle Scholar
  35. 35.
    Zumsteg, F. C., Cadieu, F. J., Marcelja, S. and Parks, R. D., Phys. Rev. Letters, 25, 1204 (1970).CrossRefGoogle Scholar
  36. 36.
    Mannari, I., Prog. Theoret. Phys. (Kyoto), 22, 235 (1959).Google Scholar
  37. 37.
    Mackintosh, A. R., Phys. Letters, 4, 140 (1963).CrossRefGoogle Scholar
  38. 38.
    Hegland, D. E., Legvold, S. and Spedding, F. H., Phys. Rev., 131, 158 (1963).CrossRefGoogle Scholar
  39. 39.
    Cress, W. D., unpublished MS thesis, 1970, Iowa State University Library, Ames, Iowa, U.S.A.Google Scholar
  40. 40.
    Jew, T. T., unpublished MS thesis, 1963, Iowa State University Library, Ames, Iowa, U.S.A.Google Scholar
  41. 41.
    Strandburg, D. L., Legvold, S. and Spedding, F. H., Phys. Rev., 127, 2046 (1962).CrossRefGoogle Scholar
  42. 42.
    Mackintosh, A. R. and Spanel, L. E., Solid State Comm., 2, 383 (1964).CrossRefGoogle Scholar
  43. 43.
    Green, R. W., Legvold, S. and Spedding, F. H., Phys. Rev., 122, 827 (1961).CrossRefGoogle Scholar
  44. 44.
    Edwards, L. R. and Legvold, S., Phys. Rev., 176, 753 (1968).CrossRefGoogle Scholar
  45. 45.
    Legvold, S., Phys. Rev., B3, 1640 (1970).Google Scholar
  46. 46.
    Mackintosh, A. R. and Smidt, F. A., Jr., Phys. Letters, 2, 107 (1962).CrossRefGoogle Scholar
  47. 47.
    Bailyn, M., Phys. Rev., 126, 2040 (1962).CrossRefGoogle Scholar
  48. 48.
    Sill, L. R. and Legvold, S., Phys. Rev., 137, A1139 (1965).CrossRefGoogle Scholar
  49. 49.
    Darnell, F. J., Phys. Rev., 130, 1825 (1963).CrossRefGoogle Scholar
  50. 50.
    Edwards, L. R., Schaeffer, J. and Legvold, S., Phys. Rev., 188, 1173 (1969).CrossRefGoogle Scholar
  51. 51.
    Alstad, J. K., Colvin, R. V., Legvold, S. and Spedding, F. H., Phys. Rev., 121, 1637 (1961).CrossRefGoogle Scholar
  52. 52.
    Johnson, D. L. and Finnemore, D. K., Phys. Rev., 158, 376 (1967).CrossRefGoogle Scholar
  53. 53.
    Wittig, J., Phys. Rev. Letters, 24, 812 (1970).CrossRefGoogle Scholar
  54. 54.
    Finnemore, D. K., Johnson, D. L., Ostenson, J. E., Spedding, F. H. and Beaudry, B. J., Phys. Rev., 137, A550 (1965).CrossRefGoogle Scholar
  55. 55.
    James, N. R., Legvold, S. and Spedding, F. H., Phys. Rev., 88, 1092 (1952).CrossRefGoogle Scholar
  56. 56.
    Lawson, A. W. and Tang, T., Phys. Rev., 76, 301 (1949).CrossRefGoogle Scholar
  57. 57.
    Nagasawa, H., Yoshida, S. and Sugawara, T., Phys. Letters, 26A, 561 (1968).CrossRefGoogle Scholar
  58. 58.
    Coqblin, B. and Schrieffer, J. R., Phys. Rev., 185, 847 (1969).CrossRefGoogle Scholar
  59. 59.
    Arajs, S. and Dunmyre, G. R., J. Less-Common Metals, 12, 162 (1967).CrossRefGoogle Scholar
  60. 60.
    Moon, R. M., Cable, J. W. and Koehler, W. C., J. Appl. Phys., 35, 1041 (1964)CrossRefGoogle Scholar
  61. 61.
    Arajs, S. and Dunmyre, R. G., Z. Naturforsch., 21, 1856 (1966).Google Scholar
  62. 62.
    Curry, M. R., Legvold, S. and Spedding, F. H., Phys. Rev., 117, 953 (1960).CrossRefGoogle Scholar
  63. 63.
    Kayser, F. X., Phys. Rev. Letters, 25, 662 (1970).CrossRefGoogle Scholar
  64. 64.
    Jerome, D. and Rieux, M., Solid State Comm., 7, 957 (1969).CrossRefGoogle Scholar
  65. 65.
    Born, H. J., Legvold, S. and Spedding, F. H., J. Appl. Phys., 32, 2543 (1961).CrossRefGoogle Scholar
  66. 66.
    Kondo, J., Prog. Theoret. Phys. (Kyoto), 27, 772 (1962).Google Scholar
  67. 67.
    Freeman, A. J., Dimmock, J. O. and Watson, R. E., Phys. Rev. Letters, 16, 94 (1966).CrossRefGoogle Scholar
  68. 68.
    Lee, R. S. and Legvold, S., Phys. Rev., 162, 431 (1967).CrossRefGoogle Scholar
  69. 69.
    Karplus, R. and Luttinger, J. M., Phys. Rev., 95, 1154 (1954).CrossRefGoogle Scholar
  70. 70.
    Maranzana, F. E., Phys. Rev., 160, 421 (1967).CrossRefGoogle Scholar
  71. 71.
    Irkhin, Yu. P. and Abelskii, Sh. Sh., Soviet Phys.-Solid State, 6, 1283 (1964).Google Scholar
  72. 72.
    Volkenshtein, N. V., Trigorova, T. K. and Federov, G. V., Soviet Physics-JETP, 24, 519 (1967).Google Scholar
  73. 73.
    Rhyne, J. J., J. Appl. Phys., 40, 1001 (1969).CrossRefGoogle Scholar
  74. 74.
    Rhyne, J. J., Phys. Rev., 172, 523 (1968).CrossRefGoogle Scholar
  75. 75.
    Rhyne, J. J., in Proc. Intern. Colloquium on Rare Earth Elements, Grenoble, France (1969).Google Scholar
  76. 76.
    Kevane, C. J., Legvold, S. and Spedding, F. H., Phys. Rev., 91, 1372 (1953).CrossRefGoogle Scholar
  77. 77.
    Anderson, G. S., Legvold, S. and Spedding, F. H., Phys. Rev., 111, 1257 (1958).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • Sam Legvold
    • 1
  1. 1.Ames Laboratory of the A.E.C.Iowa State UniversityAmesUSA

Personalised recommendations