Energy Band Structure, Indirect Exchange Interactions and Magnetic Ordering

  • A. J. Freeman

Abstract

The great variety of unusual phenomena exhibited by the rare earth metals has made them a subject of much interest to experimentalists and theorists alike. In addition to their somewhat exotic magnetic structures, they also possess unusual (often “anomalous”) electrical and optical behavior, as is clear from other chapters in this book, which is associated with and related to their magnetic ordering properties. The response of theory to the challenge posed by this wealth of experimental results has been slow and late in coming. In the absence of any detailed knowledge about the electronic band structure of these metals, theoretical workers focused their efforts within the framework of a free-electron model.(1, 2) From this early work there emerged a body of fundamental ideas regarding the origin of magnetic ordering in these systems and the basic interactions responsible for the anomalous properties observed below the magnetic ordering temperature. That these theories were so successful in providing a qualitative understanding of some of the fundamental properties of the rare earth metals is due mostly to the ingenuity of the physical methods employed, and to some degree, as we shall see, to fortuitous circumstances.

Keywords

Band Structure Fermi Surface Rare Earth Metal Magnetic Ordering Electronic Band Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    For earlier reviews of this work see Elliott, R. J., in Magnetism ( G. T. Rado and H. Suhl, eds). Academic Press, New York (1965).Google Scholar
  2. 2.
    Kasuya, T., in Magnetism, op. cit. (1966), Vol. IIB, p. 215.Google Scholar
  3. 3.
    Dimmock, J. O. and Freeman, A. J., Phys. Rev. Letters, 13, 750 (1964)CrossRefGoogle Scholar
  4. Dimmock, J. O., Freeman, A. J. and Watson, R. E., J. Appl. Phys., 36, 1142 (1965).CrossRefGoogle Scholar
  5. 4.
    Freeman, A. J., Dimmock, J. O. and Watson, R. E., Phys. Rev. Letters, 16, 94 (1966)CrossRefGoogle Scholar
  6. Watson, R. E., Freeman, A. J. and Dimmock, J. O., Phys. Rev., 167, 497 (1968).CrossRefGoogle Scholar
  7. 5.
    Dimmock, J. O., Freeman, A. J. and Watson, R. E., in Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and alloys, ( F. Abeles, ed). North-Holland Publishing Co., Amsterdam (1966), p. 273.Google Scholar
  8. 6.
    Freeman, A. J., Dimmock, J. O. and Watson, R. E., in Quantum Theory of Atoms, Molecules and the Solid State, a Tribute to John C. Slater ( P. O. Löwdin, ed). Academic Press, New York (1966), p. 361.Google Scholar
  9. 7.
    Keeton, S. C. and Loucks, T. L., Phys. Rev., 146, 429 (1966).CrossRefGoogle Scholar
  10. 8.
    Keeton, S. C. and Loucks, T. L., Phys. Rev., 168, 672 (1968).CrossRefGoogle Scholar
  11. 9.
    Fleming, G. S., Liu, S. H. and Loucks, T. L., Phys. Rev. Letters, 21, 1524 (1968).CrossRefGoogle Scholar
  12. 10.
    Andersen, O. K. and Loucks, T. L., Phys. Rev., 167, 551 (1968).CrossRefGoogle Scholar
  13. 11.
    Taken from the Hartree—Fock—Slater calculations of F. Herman and S. Skillman, in Atomic Structure Calculations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1963).Google Scholar
  14. 12.
    Slater, J. C., in Quantum Theory of Matter. McGraw Hill Book Co., New York (1951), p. 112Google Scholar
  15. Mackintosh, A. R., Proc. Simon Fraser Summer School, Alta Lake, 1970.Google Scholar
  16. 13.
    Slater, J. C., in Quantum Theory of Molecules and Solids, Vol. 2. McGraw-Hill Book Co., New York (1965)Google Scholar
  17. 14.
    Slater, J. C., Phys. Rev., 81, 385 (1951).CrossRefGoogle Scholar
  18. 15.
    Slater, J. C., Phys. Rev., 51, 846 (1937)CrossRefGoogle Scholar
  19. Saffren, M. M. and Slater, J. C., Phys. Rev., 92, 1126 (1953);CrossRefGoogle Scholar
  20. 16.
    Kohn, W. and Rostoker, N., Phys. Rev., 94, 1111 (1954);CrossRefGoogle Scholar
  21. Korringa, J., Physica, 13, 992 (1947).CrossRefGoogle Scholar
  22. 17.
    Matthiess, L. F., Phys. Rev., 133, A1399 (1964).CrossRefGoogle Scholar
  23. 18.
    Kohn, W. and Sham, L. J., Phys. Rev., 140, A1133 (1965)CrossRefGoogle Scholar
  24. Hohenberg, P. and Kohn, W., Phys. Rev., 136, B864 (1964)Google Scholar
  25. Sham, L. J. and Kohn, W., Phys. Rev., 145, 561 (1966).CrossRefGoogle Scholar
  26. 19.
    Gâspâr, R., Alta Phys. Hung., 3, 263 (1954).CrossRefGoogle Scholar
  27. 20.
    Loucks, T. L., in Augmented Plane Wave Method. W. A. Benjamin Inc., New York (1967).Google Scholar
  28. 21.
    Matthiess, L. F., Wood, J. H. and Switendick, A. C., Methods in Computational Physics, 8, 64 (1968).Google Scholar
  29. 22.
    Dimmock, J. O., in Solid State Physics, 26, 103 (1971).Google Scholar
  30. 23.
    Freeman, A. J. and Watson, R. E., Phys. Rev., 127, 2058 (1962).CrossRefGoogle Scholar
  31. 24.
    Dimmock, J. O., Freeman, A. J. and Furdyna, A. M., Bull. Am. Phys. Soc. I I 10, 377 (1965).Google Scholar
  32. 25.
    Wood, J. H., Phys. Rev., 117, 714 (1960).CrossRefGoogle Scholar
  33. 26.
    Blodgett, A. J., Jr., Spicer, W. E. and Yu, A. Y-C., in Optical Properties and Electronic Structure of Metals and Alloys ( F. Abeles, ed). North-Holland Publ. Co., Amsterdam (1966), p. 246.Google Scholar
  34. 27.
    Freeman, A. J., Dimmock, J. O. and Watson, R. E., Bull. Am. Phys. Soc. I I, 10, 376 (1965);Google Scholar
  35. Watson, R. E., Freeman, A. J. and Dimmock, J. O., Phys. Rev., 167, 497 (1968).CrossRefGoogle Scholar
  36. 28.
    Dimmock, J. O., Freeman, A. J. and Watson, R. E. (unpublished).Google Scholar
  37. 29.
    Loucks, T. L., Phys. Rev., 137, A1333 (1965).CrossRefGoogle Scholar
  38. 30.
    Liberman, D., Waber, J. T. and Cromer, D. T., Phys. Rev., 137, A27 (1965).CrossRefGoogle Scholar
  39. 31.
    The Symmetrized RAPW scheme developed and programmed by Koelling, D. D. [Phys. Rev.,188, 1049 (1969)] makes full use of symmetry and gives full identification of the relativistic bands. This lack of identification can lead to serious difficulties as was found by Keeton and Loucks in their RAPW calculations on thorium metal (ref. 7).Google Scholar
  40. 32.
    Loucks, T. L., Phys. Rev., 144, 504 (1966).CrossRefGoogle Scholar
  41. 32a.
    Gupta, R. P. and Loucks, T. L., Phys. Rev., 176, 848 (1968).CrossRefGoogle Scholar
  42. 33.
    Williams, R. W., Loucks T. L. and Mackintosh, A. R., Phys. Rev. Letters, 16, 168 (1966).CrossRefGoogle Scholar
  43. 34.
    Lomer, W. M., private communication to Loucks, T. L. (ref. 8) and in Proceedings of the International School of Physics (W. Marshall, ed). Academic Press, New York (1967), Vol. 37, p. 19.Google Scholar
  44. 35.
    Mackintosh, A. R., Phys. Letters, 28A, 217 (1968).CrossRefGoogle Scholar
  45. 36.
    Jackson, C., Phys. Rev., 178, 949 (1969).CrossRefGoogle Scholar
  46. 37.
    Myron, H. W. and Liu, S. H., Phys. Rev., RI, 2414 (1970).Google Scholar
  47. 38.
    Waber, J. T. and Switendick, A. C., in Proc. Fifth Rare Earth Research Conference. Ames, Iowa (1965), Book II, p. 75.Google Scholar
  48. 39.
    See the review articles by Gschneider, K. A. Jr., in Rare Earth Research III ( L. Eyring, ed). Gordon & Breach, New York (1965), p. 153Google Scholar
  49. Rocher, Y. A., Advances in Physics, 11, 233 (1965).CrossRefGoogle Scholar
  50. 40.
    Mukhopadhyay, G. and Majumdar, C. K., J. Phys. C (Solid State Physics), 2, 924 (1969).CrossRefGoogle Scholar
  51. 41.
    Waber, J. T., Liberman, D. and Cromer, D. T., in Proc. 4th Conference on Rare Earth Research (L. Eyring, ed). Phoenix, Arizona 1964. Gordon & Breach, New York, (1965), p. 187.Google Scholar
  52. 42.
    Freeman, A. J. and Dimmock, J. O., Bull. Am. Phys. Soc. II, 11, 216 (1966), and unpublished.Google Scholar
  53. 43.
    Endriz, J. G. and Spicer, W. E., Phys. Rev., B2, 1466 (1970).CrossRefGoogle Scholar
  54. 44.
    Brodén, G., Hagström, S. B. M. and Norris, C., Phys. Rev. Letters, 24, 1173 (1970).CrossRefGoogle Scholar
  55. 45.
    Matthiess, L. F., Phys. Rev., 139, A1893 (1965).CrossRefGoogle Scholar
  56. 46.
    Johansen, G., Solid State Commun., 7, 731 (1969).CrossRefGoogle Scholar
  57. 47.
    Johansen, G. and Mackintosh, A. R., Solid State Commun., 8, 121 (1970).CrossRefGoogle Scholar
  58. 48.
    Dimmock [ref. 22] has suggested that this discrepancy arises from the fact that the energy band scheme is an independent-electron model for the electronic states which ignores correlation energies and the resulting multiplet splittings which dominate the 4f energies in the rare earths.Google Scholar
  59. 49.
    Fadley, C. S., Shirley, D. A., Freeman, A. J., Bagus, P. S. and Mallow, J. V., Phys. Rev. Letters, 23, 1397 (1969).CrossRefGoogle Scholar
  60. 50.
    Tanuma and associates made the first de Haas-van Alphen measurement for a rare earth. They first studied f.c.c. Yb metal [Tanuma, S., Ishizawa, Y., Nagasawa, H. and Sugawara, T., Phys. Letters, 25A, 669 (1967)Google Scholar
  61. Tanuma, S., Dators, W. B., Doi, H. and Dunsworth, A., Solid State Commun., 8, 1107 (1970)CrossRefGoogle Scholar
  62. Bucher, E., Schmidt, P. H., Jayaramon, A., Andres, K., Maita, J. P., Nassau, K. and Deinier, P. D. [Phys. Rev.,B2, 3911 (1970)], and independently Kayser F. X. [Phys. Rev. Letters,25, 662 (1970)] have reported on a first-order magnetic phase transition (paramagnetic to diamagnetic) associated with an fcc-hcp martensitic transformation in high purity Yb. The fcc phase was obtained from the hcp phase by applying strain at room temperature. They speculate that this transition can be explained by assuming a conversion of a small fraction (about 0.8%) of Yb3+ (above the transition) into Yb2+ (below the transition). We believe such speculations to be premature in view of the lack of detailed supporting evidence.Google Scholar
  63. 50a.
    Koelling, D. D. and Harmon, B., Bull. Am. Phys. Soc., 17, 94 (1972).Google Scholar
  64. 51.
    Jepsen, O. and Anderson, O. K. Solid State Comm., 9, 1763 (1971).CrossRefGoogle Scholar
  65. a.
    Harmon, B. and Koelling, D. D., private communication.Google Scholar
  66. 52.
    Patrick, L., Phys. Rev., 93, 384 (1954)CrossRefGoogle Scholar
  67. McWhan, D. B. and Stevens, A. L., Phys. Rev., 139, A682 (1959)CrossRefGoogle Scholar
  68. Bloch, D. and Pauthenet, R., in Proceedings of the International Conference on Magnetism, Nottingham, 1964. The Institute of Physics and The Physical Society, London (1965), p. 255.Google Scholar
  69. 53.
    Robinson, L. B., Tan, S. I. and Sterett, K. F., Phys. Rev., 141, 548 (1966).CrossRefGoogle Scholar
  70. 54.
    Austin, I. G. and Misra, P. K., Phil. Mag., 15, 529 (1967).CrossRefGoogle Scholar
  71. 55.
    Umebayashi, H., Shirane, G., Frazer, B. C. and Daniels, W. B., Phys. Rev., 165, 688 (1968).CrossRefGoogle Scholar
  72. 56.
    Fleming, G. S. and Liu, S. H., Phys. Rev. B, 2, 164 (1970).CrossRefGoogle Scholar
  73. 57.
    For a review see Gschneider, K. A. and Smolochowski, R., Less Common Metals, 5, 372 (1963).Google Scholar
  74. 58.
    See for example, Gschneider, K. A., ref. 39.Google Scholar
  75. 59.
    Phillips, R. A., to be published.Google Scholar
  76. 60.
    Williams, R. W. and Mackintosh, A. R., Phys. Rev., 168, 679 (1968).CrossRefGoogle Scholar
  77. 61.
    Ruderman, M. A. and Kittel, C., Phys. Rev., 96, 99 (1954).CrossRefGoogle Scholar
  78. 62.
    Kasuya, T., Progr. Theoret. Phys. (Japan), 16, 45 (1956)CrossRefGoogle Scholar
  79. Mitchell, A. H., Phys. Rev., 105, 1439 (1957).CrossRefGoogle Scholar
  80. 63.
    Yosida, K., Phys. Rev., 106, 893 (1957).CrossRefGoogle Scholar
  81. 64.
    Kondo, J., Prog. Theoret. Phys. (Kyoto), 32, 37 (1964).CrossRefGoogle Scholar
  82. 65.
    van den Berg, G. J., in Progress in Low Temperature Physics, IV, 194 (1964)Google Scholar
  83. Bailyn, M., Adv. Phys., 15, 179 (1966)CrossRefGoogle Scholar
  84. Rocher, Y., Adv. Phys.,11, 233 (1962) and references therein.Google Scholar
  85. 66.
    Anderson, P. W., Phys. Rev., 124, 41 (1961).CrossRefGoogle Scholar
  86. Schrieffer, J. R., J. Appl. Phys., 38, 1143 (1967).CrossRefGoogle Scholar
  87. 67.
    Friedel, J., Adv. Phys., 3, 446 (1954).CrossRefGoogle Scholar
  88. 68.
    See the recent review by Kondo, J., in Solid State Physics, 23, 183 (F. Seitz, D. Turnbull, H. Ehrenreich, eds). Academic Press, New York (1969), and references therein.Google Scholar
  89. 69.
    Heeger, A. J.,Solid State Physics, 23, 283 (F. Seitz, D. Turnbull, H. Ehrenreich, eds). Academic Press, New York (1969), gives an extensive review of the experimental situation in such systems.Google Scholar
  90. 70.
    de Gennes, P. G., Compt. Rend., 247, 1836 (1958).Google Scholar
  91. 71.
    Van Vleck, J. H., Rev. Mod. Phys., 34, 681 (1962).CrossRefGoogle Scholar
  92. 72.
    Liu, S. H., Phys. Rev., 121, 451 (1961).CrossRefGoogle Scholar
  93. 73.
    Watson, R. E., and Freeman, A. J., Phys. Rev., 152, 566 (1966).CrossRefGoogle Scholar
  94. 74.
    Watson, R. E., and Freeman, A. J., Phys. Rev., 178, 725 (1969).CrossRefGoogle Scholar
  95. 75.
    Herring, C., in Magnetism ( G. T. Rado and H. Suhl, eds). Academic Press, New York (1966), Vol. IV, gives a massive account of susceptibilities in metals.Google Scholar
  96. 76.
    Overhauser, A. W., J. Appl. Phys., 34, 1019 (1963).CrossRefGoogle Scholar
  97. 77.
    Kittel, C., in Solid State Physics, 22, 1 ( F. Seitz, D. Turnbull and H. Ehrenreich, eds). Academic Press, New York (1968).Google Scholar
  98. 78.
    Nagamiya, T., Solid State Physics, 20, 306 (1967).Google Scholar
  99. Fedro, A. J. and Arai, T., discuss the relative stability of magnetic states [Phys. Rev.,170, 583 (1968)].Google Scholar
  100. Falicov, L. M. and da Silva, C. E. T. [Phys. Rev. Lett.,26, 715 (1971)]Google Scholar
  101. 79.
    Villain, J., J. Phys. Chem. Solids, 11, 303 (1959).CrossRefGoogle Scholar
  102. 80.
    Blandin, A., J. Phys. Chem. Solids, 22, 507 (1961).Google Scholar
  103. 81.
    Gauthier, F., J. Phys. Chem. Solids, 24, 387 (1963).CrossRefGoogle Scholar
  104. 82.
    Roth, L., Zeiger H. and Kaplan, T., Phys. Rev., 149, 519 (1966).CrossRefGoogle Scholar
  105. 83.
    Kohn, W., Phys. Rev. Letters, 2, 393 (1959).CrossRefGoogle Scholar
  106. 84.
    Bambakidis, G., J. Phys. Chem. Solids, 31, 503 (1970).CrossRefGoogle Scholar
  107. 85.
    Wolff, P. A., Phys. Rev., 120, 814 (1960).CrossRefGoogle Scholar
  108. 86.
    Mueller, F. M.,Freeman, A. J., Dimmock, J. O. and Furdyna, A. M., Phys. Rev., BI, 4617 (1970).Google Scholar
  109. 87.
    Giovanni, B., Peter, M. and Schrieffer, J. R., Phys. Rev., 152, 566 (1966).CrossRefGoogle Scholar
  110. 88.
    Yosida, K., Progr. Theoret. Phys. (Kyoto), 28, 759 (1962).CrossRefGoogle Scholar
  111. 89.
    Herring, C., ref. 75, p. 337–338.Google Scholar
  112. 90.
    Kim, D. J., Phys. Rev., 149, 434 (1966); 167, 545 (1968).Google Scholar
  113. 91.
    This form of interaction was criticized by Kaplan [Kaplan, T. A., Phys. Rev. Letters, 14, 499 (1969).Google Scholar
  114. 92.
    For a non-spherical moment there will be contributions to j(k, k’) from +J’i and the components having different orbital angular moment values, 1. While these are expected to be relatively unimportant, their contributions will cause j(k,k’) to deviate further from j(q).Google Scholar
  115. 93.
    Freeman, A. J. and Watson, R. E., Phys. Rev., 127, 2058 (1962).CrossRefGoogle Scholar
  116. 93.
    Watson, R. E. and Freeman, A. J., Phys. Rev. Letters, 6, 277, 388E (1961).CrossRefGoogle Scholar
  117. 95.
    Jaccarino, V., Matthias, B. T., Peter, M., Suhl, H., and Wernick, J. H., Phys. Rev. Letters, 5, 251 (1960)Google Scholar
  118. Peter, M., J. Appl. Phys., 32, 3385 (1961)CrossRefGoogle Scholar
  119. Peter M. et al., Phys. Rev.,126, 1395 (1962)Google Scholar
  120. Shaltiel, D., Wemick, J. H., Williams, H. J. and Peter, M., ibid., 135, A1346 (1964).Google Scholar
  121. 96.
    Anderson, P. W. and Clogston, A. M., Bull. Am. Phys. Soc., 2, 124 (1961)Google Scholar
  122. Anderson, P. W., Phys. Rev., 124, 41 (1961)CrossRefGoogle Scholar
  123. Kondo, J., Progr. Theoret. Phys., 28, 846 (1962)CrossRefGoogle Scholar
  124. Schrieffer, J. R. and Wolff, P. A., Phys. Rev., 149, 491 (1966).CrossRefGoogle Scholar
  125. 97.
    Watson, R. E., Koide, S., Peter, M. and Freeman, A. J., Phys. Rev. 139, A167 (1965).CrossRefGoogle Scholar
  126. 98.
    deWiin, H. W., Buschow, K. N. J. and van Diepen, A. M., Phys. Status Solidi 30, 759 (1968).CrossRefGoogle Scholar
  127. 99.
    Watson, R. E., Freeman, A. J. and Koide, S., Phys. Rev., 186, 625 (1969).CrossRefGoogle Scholar
  128. 100.
    Sugawara, T., J. Phys. Soc. Japan, 20, 2252 (1965)CrossRefGoogle Scholar
  129. Sugawara, T. and Eguchi, H., J. Phys. Soc. Japan, 21, 725 (1966)CrossRefGoogle Scholar
  130. Sugawara, T., Yamase, I. and Soga, R., J. Phys. Soc. Japan, 20, 618 (1965)CrossRefGoogle Scholar
  131. Sugawara, T. and Yoshida, S., J. Phys. Soc. Japan, 24, 1399 (1968)CrossRefGoogle Scholar
  132. Nagasawa, H., Yoshida, S. and Sugawara, T., Phys. Lett., 26A, 561 (1968)CrossRefGoogle Scholar
  133. Smith, T. F., Phys. Rev. Letters, 17, 386 (1966)CrossRefGoogle Scholar
  134. Coqblin, B. and Ratto, C. F., Phys. Rev. Letters, 21, 1065 (1968).CrossRefGoogle Scholar
  135. 101.
    See Coqblin, B., Thesis, Orsay, 1967 (unpublished)Google Scholar
  136. Coqblin, B. and Blandin, A., Advan. Phys., 17, 281 (1968)CrossRefGoogle Scholar
  137. Coqblin, B., Proceedings of the Seventh Rare Earth Conference. Coronado, Calif. (1968) and references therein.Google Scholar
  138. 102.
    A recent review of the continuous magnetic—non magnetic transition of dilute alloys with Ce impurities may be found in Coqblin, B., Maples, N. B., and Toulouse, G. Int. J. of Magnetism, 1, 333 (1971).Google Scholar
  139. 103.
    Coqblin, B. and Schrieffer, J. R., Phys. Rev., 185, 847 (1969).CrossRefGoogle Scholar
  140. 104.
    Schrieffer, J. R. and Wolff, P. A., ref. 96.Google Scholar
  141. 105.
    Lomer, W. M., Proc. Phys. Soc. (London), 80, 489 (1962).CrossRefGoogle Scholar
  142. 106.
    Yosida, K. and Watabe, A., Progr. Theoret. Phys. (Kyoto), 28, 361 (1962).CrossRefGoogle Scholar
  143. 107.
    Mackintosh, A. R., Phys. Rev. Letters, 9, 90 (1962).CrossRefGoogle Scholar
  144. 108.
    Elliott, R. J. and Wedgwood, F. A., Proc. Phys. Soc. (London), 84, 63 (1964).CrossRefGoogle Scholar
  145. 109.
    de Gennes, P. G., J. Phys. Radium, 23, 630 (1962)CrossRefGoogle Scholar
  146. Kaplan, T. A., J. Appl. Phys., 34, 1339 (1963).CrossRefGoogle Scholar
  147. 110.
    Miwa, H., Progr. Theoret. Phys. (Kyoto), 29, 477 (1963).CrossRefGoogle Scholar
  148. 111.
    Schüler, C. C., Phys. Letters, 12, 84 (1964).CrossRefGoogle Scholar
  149. 112.
    Cooper, B. R. and Redington, R. W., Phys. Rev. Letters, 14, 1066 (1965).CrossRefGoogle Scholar
  150. 113.
    Evenson, W. E. and Liu, S. H., Phys. Rev. Letters, 21, 432 (1968).CrossRefGoogle Scholar
  151. 114.
    Evenson, W. E. and Liu, S. H., Phys. Rev., 178, 783 (1969).CrossRefGoogle Scholar
  152. 114a.
    Liu, S. H., Gupta, R. P. and Sinha, S. K., Phys. Rev., B4, 1100 (1971).CrossRefGoogle Scholar
  153. 115.
    Moon, R. M., Cable, J. W. and Koehler, W. C., J. Appl. Phys. Suppl., 35, 401 (1964).CrossRefGoogle Scholar
  154. 116.
    Cable, J. W., Moon, R. M., Koehler, W. C. and Wollan, E. O., Phys. Rev. Letters, 12, 553 (1964).CrossRefGoogle Scholar
  155. 117.
    Koehler, W. C., J. Appl. Phys., 36, 1078 (1965).CrossRefGoogle Scholar
  156. 118.
    Evenson, W. E., Fleming, G. S. and Liu, S. H., Phys. Rev., 178, 930 (1969).CrossRefGoogle Scholar
  157. 119.
    Gupta, R. P. and Sinha, S. K., J. Appl. Phys., 41, 915 (1970).CrossRefGoogle Scholar
  158. 120.
    Gilat, G. and Raubenheimer, L. J., Phys. Rev., 144, 390 (1966).CrossRefGoogle Scholar
  159. Gilat, G. and Herman, F., Annals of Physics (to appear).Google Scholar
  160. 121.
    Mueller, F. M., Garland, J. W., Cohen, M. H. and Bennemann, K. H., Annals of Physics, 67, 19 (1971)CrossRefGoogle Scholar
  161. 122.
    See discussions in Computational Methods in Band Theory (P. M. Marcus, J. F. Januk and A. R. Williams, eds). Plenum Press, New York, London, (1971) by J. F. Januk (p. 323)Google Scholar
  162. R. L. Jacobs and D. Lipton (p. 340), and J. B. Diamond (p. 347).Google Scholar
  163. 123.
    Cooper, B. R., Phys. Letters, 6, 19 (1963).CrossRefGoogle Scholar
  164. 124.
    de Gennes, P. G. and Saint James, D., Solid State Commun., 1, 62 (1963).CrossRefGoogle Scholar
  165. 125.
    Miwa, H., Proc. Phys. Soc., 85, 1197 (1965).CrossRefGoogle Scholar
  166. 126.
    Kaplan, T. A., J. Appl. Phys., 34, 1339 (1963).CrossRefGoogle Scholar
  167. 127.
    Arai, T., Phys. Rev. Letters,25, 1761 (1970). Fedro, A. J. and Arai, T., Phys. Rev. (in press).Google Scholar
  168. 128.
    Moller, H. B., Houmann, J. C. G. and Mackintosh, A. R., Phys. Rev. Letters, 19, 312 (1967).CrossRefGoogle Scholar
  169. 129.
    Ziman, J. M., in Electrons and Phonons. Clarendon Press, Oxford (1960) and references therein.Google Scholar
  170. 130.
    Mackintosh, A. R. and Spanel, L. E., Solid State Commun., 2, 388 (1964).CrossRefGoogle Scholar
  171. Brun, T. O. et al., Phys. Rev.,B1, 1251 (1970). Koehler, W. C. et al., Phys. Rev.,126, 1672 (1962).Google Scholar
  172. 131.
    Van Hove, L., Phys. Rev., 95, 249 (1954).Google Scholar
  173. 132.
    de Gennes, P. G., in Magnetism, op. cit., III.Google Scholar
  174. 133.
    Suezaki, Y., and Mori, H., Phys. Letters, 28A, 70 (1968).CrossRefGoogle Scholar
  175. 134.
    Schüler, C. Chr., op. cit. in ref. 5, p. 221 and references therein to earlier work.Google Scholar
  176. 135.
    See the review given by Elliott, R. J., in Comments Solid State Physics, 1, 85 (1968).Google Scholar
  177. 136.
    Das, K. C. and Ray, D. K., Solid State Commun., 8, 2025 (1970).CrossRefGoogle Scholar
  178. 137.
    Crystal-field theory has a long history dating back to Bethe, H., Ann. Physik, 3, 133 (1929).Google Scholar
  179. Stevens, K. W. H., Proc. Phys. Soc. (London), A65, 209 (1952)Google Scholar
  180. Elliott, R. J. and Stevens, K. W. H-. Proc. Roy. Soc. (London), A215, 437 (1952)CrossRefGoogle Scholar
  181. Judd, B. R., ibid., A227, 552 (1955).Google Scholar
  182. Newman, D. J., in Advan. Phys., 20, 197 (1971).Google Scholar
  183. 138.
    Judd, B. R., Proc. Roy. Soc. (London), A241, 414 (1957); Margolis, J. S., J. Chem. Phys., 35, 1367 (1961).Google Scholar
  184. 139.
    Hutchings, M. T., and Ray, D. K., Proc. Phys. Soc. (London), 81, 663 (1963).CrossRefGoogle Scholar
  185. 140.
    Elliott, R. J. and Stevens, K. W. H., Proc. Roy. Soc. (London), 219, 387 (1953)CrossRefGoogle Scholar
  186. Powell, M. J. and Orbach, R., Proc. Phys. Soc. (London), 78, 753 (1961).CrossRefGoogle Scholar
  187. 141.
    Hutchings, M. T. and Wolf, W. P., J. Chem. Phys., 41, 617 (1964).CrossRefGoogle Scholar
  188. 142.
    See Freeman, A. J. and Ellis, D. E., Phys. Rev. Letters, 24, 516 (1970).CrossRefGoogle Scholar
  189. 143.
    Burns, G., Phys. Rev., 128, 2121 (1962)CrossRefGoogle Scholar
  190. Lenander, C. J. and Wong, E. Y., J. Phys. Chem., 38, 2750 (1963)CrossRefGoogle Scholar
  191. Ghatikar, M. N., Raychaudhuri, A. K. and Ray, D. K., Proc. Phys. Soc. (London), 84, 297 (1964)CrossRefGoogle Scholar
  192. Stemheimer, R. M., Phys. Rev., 146, 140 (1966)CrossRefGoogle Scholar
  193. Sternheimer, R. M., Blume, M. and Peierls, R. F., Phys. Rev., 173, 376 (1968).CrossRefGoogle Scholar
  194. 144.
    Watson, R. E. and Freeman, A. J., Phys. Rev., 133, A1571 (1964).CrossRefGoogle Scholar
  195. 145.
    Freeman, A. J. and Watson, R. E., Phys. Rev., 139, A1606 (1965).CrossRefGoogle Scholar
  196. 146.
    Jorgensen, C. K., Pappalado, R. and Schmidtke, H. H., J. Chem. Phys., 39, 1422 (1963).CrossRefGoogle Scholar
  197. 147.
    Axe, J. D. and Burns, G., Phys. Rev., 152, 331 (1966).CrossRefGoogle Scholar
  198. 148.
    Watson, R. E. and Freeman, A. J., Phys. Rev., 156, 251 (1967).CrossRefGoogle Scholar
  199. 149.
    Ellis, M. M. and Newman, D. J., J. Chem. Phys., 47, 1986 (1967).Google Scholar
  200. 150.
    Raychaudhuri, A. K. and Ray, D. K., Proc. Phys. Soc. (London), 90, 839 (1967).CrossRefGoogle Scholar
  201. 151.
    Ellis, M. M. and Newman, D. J., J. Chem. Phys., 49, 4037 (1968).CrossRefGoogle Scholar
  202. 152.
    Ellis, D. E. and Freeman, A. J., Journal de Physique (Proceedings of the Seventh International Conference on Magnetism, Grenoble 1970 ), 32, 1192 (1971).Google Scholar
  203. 153.
    Coles, B. R. and Griffiths, D., Phys. Rev. Letters, 16, 1093 (1966)CrossRefGoogle Scholar
  204. Orbach, R. and Burr, C. R., Phys. Rev. Letters, 19, 1133 (1967).CrossRefGoogle Scholar
  205. 154.
    Hirst, L. L., Williams, G., Griffiths, D. and Coles, B. R., J. Appl. Phys., 39, 844 (1968)CrossRefGoogle Scholar
  206. Williams, G. and Hirst, L. L., Phys. Rev., 185, 407 (1970).CrossRefGoogle Scholar
  207. 155.
    Rainford, B. D., Turberfield, K. C., Busch, G. and Vogt, O., J. Phys. C: Proc. Phys. Soc., London, 1, 679 (1968)CrossRefGoogle Scholar
  208. Rainford, B. and Houmann, J. C. G., Phys. Rev. Letters, 26, 1254 (1971).CrossRefGoogle Scholar
  209. 156.
    Turberfield, K. C., Passell, L., Birgeneau, R. and Bucher, E., Phys. Rev. Letters, 25, 752 (1970).CrossRefGoogle Scholar
  210. 157.
    Das, K. C. and Ray, D. K., Phys. Rev., 187, 777 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1972

Authors and Affiliations

  • A. J. Freeman
    • 1
    • 2
  1. 1.Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Physics DepartmentNorthwestern UniversityEvanstonUSA

Personalised recommendations