Choosing a Response Using Problem Solving Plans and Rhetorical Relations

  • P. Barboni
  • D. Sestero
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 511)


In building a system capable of natural language interaction with a human being, a key issue is how the context (dialogic and pragmatic) constrains the structure of the ongoing dialogue1. In fact, the context provides the basis both for the recognition of an agent’s goals and plans and for the construction of an answer that “makes sense”.


Communicative Goal Plan Recognition Explanatory Dialogue Content Selection Linguistic Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airenti G., Bara B.G. and Colombetti M. 1993. Conversational and behavior games in the pragmatics of dialogue. Cognitive Science 17, 197–256.CrossRefGoogle Scholar
  2. Allen J. 1996. Natural Language Understanding. 2nd Edition Benjamin Cummings, (540–576).Google Scholar
  3. Appelt D.E. 1985. Planning English Sentences. Cambridge University Press, Cambridge, England.Google Scholar
  4. Ardissono L., Lombardo A. and Sestero D. 1993. A flexible approach to cooperative response generation in information-seeking dialogues. In Proceedings of the 31st Annual Meeting of the ACL. 274–276. Columbus, OH.Google Scholar
  5. Ardissono L., Boella G. and Lesmo L. 1995. Indirect speech-acts and politeness: A computational approach. In Proceedings of the 17th Annual Conference of the Cognitive Science Society. Pittsburgh, PA, 316–321.Google Scholar
  6. Ardissono L., Boella G. and Sestero D. 1996. Uso di piani di problem-solving nel riconoscimento di piani e obiettivi. Interfacce Intelligenti. AIIA Notizie. Periodico dell’Associazione Italiana per l’Intelligenza Artificiale. Supplemento Anno IX - 3Google Scholar
  7. Ardissono L. and Sestero D. 1996. Using dynamic user models in the recognition of the plans of the user. User Modeling and User-Adapted Interaction, 5 (2): 157–190CrossRefGoogle Scholar
  8. Bara B. G. 1990. Scienza cognitiva: un approccio evolutivo alla simulazione della mente. Bollati Boringhieri, Torino.Google Scholar
  9. Belkin N. J., Cool C., Stein A. and Thiel U. 1995. Cases, Scripts, and Information-Seeking Strategies: On the Design of Interactive Information Retrieval Systems. Expert Systems with Applications, Volume 9 (3), 379–395.CrossRefGoogle Scholar
  10. Brown P. and Levinson S.C. 1987. Politeness: some universals on language usage Cambridge University Press, Cambridge, England.Google Scholar
  11. Carberry S. 1988. Modeling the user’s plans and goals. Computational Linguistics, 14, 23–37.Google Scholar
  12. Carberry S., Kazi Z. and.Lambert L. 1992. Modeling discourse, problem-solving, and domain goals incrementally in task-oriented dialogue. Proceedings 3rd Int. Workshop on User Modeling. 192–201.Google Scholar
  13. Carberry S., Chu-Carrol J., Green N. and Lambert L. 1993. Rhetorical Structure Theory: Necessary but not sufficient. Proceedings of the ACL Workshop on Intentionality and Structure in Discourse Relations.Google Scholar
  14. Carberry S. and Chu-Carrol J. 1995. Response Generation in Collaborative Negotiation. In Proceedings of the 33rd Annual Meeting of the ACL, State University of New York, Buffalo, 136–143. Association for Computational Linguistics, Arlington, VA.Google Scholar
  15. Castelfranchi C. and Parisi D. 1980. Linguaggio, conoscenze e scopi. Il Mulino. Bologna. Cawsey A. 1993. Explanation and Interaction: The Computer Generation of Explanatory Dialogues. MIT Press, Cambridge, MAGoogle Scholar
  16. Cohen P.R. and Levesque H.J. 1990. Rational interaction as the basis for communication. In Cohen, Morgan, and Pollack, editors, Intentions in communications, 221–255. MIT Press.Google Scholar
  17. Fawcett R.P., van der Mije A. and van Wissen C. 1988. Towards a Systemic Flowchart Model for Discourse. In Fawcett R.P. and Young D. (eds.): New Developments in Systemic Linguistics. Vol. 2: Theory and Application. London, Pinter, 116–143.Google Scholar
  18. Hovy E. H. 1988a. Planning coherent multisentential text. In Proceedings 26`h Annual Conference of the ACL, Buffalo, NY, 163–169.Google Scholar
  19. Hovy E.H. 1988b. Generating Natural Language under Pragmatic Constraints. Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  20. Hovy E.H. 1993. Automated discourse generation using discourse structure relations. Artificial Intelligence 63, 341–385.CrossRefGoogle Scholar
  21. Kautz H. 1990. A Circumscriptive Theory of Plan Recognition. In P.R. Cohen, J. Morgan, and M. E. Pollack, eds., Kautz H, 105–133. MIT Press.Google Scholar
  22. Lesmo L. and Lombardo V. 1993. Un approccio computazionale all’interpretazione del linguaggio. Epistemologia. Fascicolo speciale su Linguaggi e Macchine. 165–190.Google Scholar
  23. Mann W.C. and Thompson S.A. 1988. Rhetorical Structure Theory: Towards a functions theory of text organization. TEXT 8 (3): 243–81.Google Scholar
  24. McKeown K.R. 1985. Text Generation: Using Discourse Strategies and Focus Constraints to Generate Natural Language Text. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  25. Miceli M., Cesta A. and Rizzo P. 1995. Distributed artificial intelligence from a sociocognitive standpoint: Looking at reasons for interaction. Acta Psychologica special issue on Cognitive Ergonomics.Google Scholar
  26. Moore, R.C. 1985. A formal theory of knowledge and action. In J. R. Hobbs and R. C. Moore, editors, Formal Theories of the Commonsense World. Ablex Publishing Corp., Norwood, NJ, 319–358.Google Scholar
  27. Moore J.D. and Pollack M.E. 1992. A problem for RST: The need for multi-level discourse analysis. Computational Linguistics 1 8(4): 537–44Google Scholar
  28. Moore J.D. 1995. Participating in Explanatory Dialogues. Interpreting and Responding to Questions in Context. MIT Press, Cambridge, MA.Google Scholar
  29. Paris C.L. 1988. Tailoring Object Descriptions to a User’s Level of Expertise. Computational Linguistics 14 (3), 64–78Google Scholar
  30. Ramshaw L.A. 1989. A metaplan for problem-solving discourse. In Proceedings of the 29th Annual Meeting of ACL, 39–46, Berkeley, CA.Google Scholar
  31. Raskutti B. and Zukerman I. 1994. Query and response generation during information-seeking interactions. In Proceedings of the 4th Conference on User Modeling. Hyannis, MA, 25–30.Google Scholar
  32. Russell S. and Norvig P. 1995. Artificial Intelligence, A Modern Approach. Prentice Hall. Sestero D. 1998. Producing Responses in Goal-Endowed Dialogue Systems. Doctorate thesis. University and Polytechnic of Torino.Google Scholar
  33. Stein A. and Maier E. 1995. Structuring collaborative information-seeking dialogues. Knowledge-Based Systems, Volume 8, Numbers 2–3, Elsevier Science. 82–93.Google Scholar
  34. Wilensky, R. 1981. Meta-planning: Representing and using knowledge about planning in problem-solving and natural language understanding. Cognitive Science 5, 197–233.CrossRefGoogle Scholar
  35. Winograd T. and Flores F. 1986. Understanding Computers and Cognition. Ablex. Wooldridge M. and Jennings N. R. 1995. Intelligent Agents: Theory and Practice. Knowledge Engineering Review, Volume 10, Number 2.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • P. Barboni
  • D. Sestero

There are no affiliations available

Personalised recommendations