• Robert J. Vanderbei
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 37)


In this chapter, we discuss briefly the most important applications of network flow problems.


Short Path Bipartite Graph Assignment Problem Sink Node Transportation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Hitchcock, F. (1941), `The distribution of a produce from several sources to numerous localities’, Journal of Mathematical Physics 20, 224–230. 257Google Scholar
  2. Dijkstra, E. (1959), `A note on two problems in connexion with graphs’, Numerische Mathematik 1, 269–271. 257Google Scholar
  3. Elias, P., Feinstein, A., and Shannon, C. (1956), `Note on maximum flow through a network’, IRE Transactions on Information Theory IT-2, 117–119. 257Google Scholar
  4. Kotzig, A. (1956), Súvislost’ a Pravidelinâ Súvislots’ Konecnÿch Grafov, Technical report, Bratislava: Vysokâ Skola Ekonomickâ. 257Google Scholar
  5. Ford, L., and Fulkerson, D. (1956), `Maximal flow through a network’, Canadian Journal of Mathematics 8, 399–404. 257Google Scholar
  6. Howard, R. (1960), Dynamic Programming and Markov Processes, John Wiley and Sons, New York. 257zbMATHGoogle Scholar
  7. Ahuja, R., Magnanti, T., and Orlin, J. (1993), Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs, NJ. 240, 257Google Scholar

Copyright information

© Robert J. Vanderbei 2001

Authors and Affiliations

  • Robert J. Vanderbei
    • 1
  1. 1.Dept. of Operations Research & Financial EngineeringPrinceton UniversityUSA

Personalised recommendations