Advertisement

A Comparison of Conditional and Unconditional Inference Relating to Log-Gamma Distribution

  • N. Balakrishnan
  • P. S. Chan
Chapter

Abstract

The family of log-gamma distributions, with varying values of the shape parameter k, provides a wide range of distributions including the extreme value and normal. In this paper, we shall discuss some inferential issues relating to this family of distributions based on censored samples. First, by assuming the shape parameter k to be known, we discuss maximum likelihood estimation of location and scale parameters. Then we describe the construction of the confidence intervals conditionally and unconditionally for these parameters. We also make a comparison of the conditional and unconditional methods of constructing confidence intervals. Finally, we illustrate these methods of inference with a numerical example.

Keywords

Joint Density Function Construct Confidence Interval Generalize Gamma Distribution Pivotal Quantity Marginal Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and I. A. Stegun (eds.) (1965). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York.Google Scholar
  2. Bain, L. J. (1972). Inferences based on censored sampling from the Weibull or extreme-value distribution. Technometrics 14, 693–702.zbMATHCrossRefGoogle Scholar
  3. Bain, L. J. (1978). Statistical Analysis of Reliability and Life-testing Models—Theory and Practice, Marcel Dekker, New York.Google Scholar
  4. Balakrishnan, N. and P. S. Chan (1994a). Log-gamma order statistics and linear estimation of parameters, Comput. Statist. Data Anal (To appear).Google Scholar
  5. Balakrishnan, N. and P. S. Chan (1994b). Asymptotic best linear unbiased estimation for the log-gamma distribution, Sankhyd, Series B (To appear).Google Scholar
  6. Balakrishnan, N. and P. S. Chan (1994c). Maximum likelihood estimation for the log-gamma distribution under Type-II censored samples and associated inference, In Recent Advances in Life-Testing and Reliability (Ed., N. Balakrishnan), Chapter 22, CRC Press, Boca Raton, FL.Google Scholar
  7. Balakrishnan, N. and A. C. Cohen (1991). Order Statistics and Inference: Estimation Methods, Academic Press, Boston.zbMATHGoogle Scholar
  8. Cohen, A. C. and B. J. Whitten (1988). Parameter Estimation in Reliability and Life Span Models, Marcel Dekker, New York.zbMATHGoogle Scholar
  9. DiCiccio, T. J. (1987). Approximate inference for the generalized gamma distribution, Technometrics 29, 32–39.MathSciNetCrossRefGoogle Scholar
  10. Lawless, J. F. (1978). Confidence interval estimation for the Weibull and extreme value distributions, Technometics 20, 355–364.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Lawless, J. F. (1980). Inference in the generalized gamma and log-gamma distribution, Technometrics 22, 409–419.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Lawless, J. F. (1982). Statistical Models E4 Methods For Lifetime Data, John Wiley & Sons, New York.Google Scholar
  13. Lieblein, J. and M. Zelen (1956). Statistical investigation of the fatigue life of deep groove ball bearings, J. Res. Nat. Bur. Stand. 57, 273–316.CrossRefGoogle Scholar
  14. Mann, N. R., Schafer, R. E., and N. D. Singpurwalla (1974). Methods for Statistical Analysis of Reliability and Life Data, John Wiley & Sons, New York.Google Scholar
  15. Prentice, R. L. (1974). A log-gamma model and its maximum likelihood estimation, Biometrika 61, 539–544.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Young, D. H. and S. T. Bakir (1987). Bias correction for a generalized log-gamma regression model, Technometrics 29, 183–191.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • N. Balakrishnan
    • 1
    • 2
  • P. S. Chan
    • 1
    • 2
  1. 1.Department of Mathematics and StatisticsMcMaster UniversityCanada
  2. 2.Department of StatisticsThe Chinese University of Hong KongHong Kong

Personalised recommendations