Skip to main content

Probability Approximations and Inequalities for Sequential Tests

  • Chapter
Lifetime Data: Models in Reliability and Survival Analysis
  • 749 Accesses

Abstract

In this article accurate inequalities for tail probabilities of stopping times of sequential tests will be discussed. These inequalities will be utilized to derive approximations for the overall significance level, power function, expected number and the variance of observations needed to implement the test, the P-value and the approximate confidence interval for the parameter tested. Numerical results for the triangular boundary test for normal observations are presented. Applications to reliability theory are briefly mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANDERSON, T. W. (1960). A modification of the sequential probability ratio test to reduce sample size. Ann. Math. Statist. 31, 165–197.

    Article  MathSciNet  MATH  Google Scholar 

  • ARMITAGE, P. (1975). Sequential Medical Trials, 2nd ed. Oxford, London.

    Google Scholar 

  • AROIAN, L. A. and ROBISON, D. E. (1963). Direct methods for for exact truncated sequential tests of the mean of a normal distribution. Technometrics 11, 661–675.

    Google Scholar 

  • BARLOW, R.E., and PROSCHAN, F. (1965). Mathematical Theory of Reliability. John Wiley Sons, &, New York.

    Google Scholar 

  • BRYANT, C.M., and SCHMEE, J. (1979). Confidence limits on MTBF for sequential test plans of MIL-STD 781. Technometrics 21, 33–42.

    Article  MATH  Google Scholar 

  • GLAZ, J., and JOHNSON, B. McK. (1986). Approximating boundary crossing probabilities with applications to sequential tests. Seq. Anal. 5, 37–72.

    Article  MathSciNet  MATH  Google Scholar 

  • GLAZ, J. and KENYON, J. R. (1993). Approximating the characteristics of sequential test. Technical Report.

    Google Scholar 

  • KOLHRUS, D. (1994). Exact formulas for the OC and ASN functions of the SPRT for Erlang distribution. Seq. Anal. 13, 53–62.

    Article  Google Scholar 

  • LAI, T.L. (1973). Optimal stopping and sequential tests which minimize the maximum expected sample size. Ann. Statist. 1, 659–673.

    Article  MathSciNet  MATH  Google Scholar 

  • LERCHE, H. R. (1986). Boundary Crossing of Brownian motion. Lecture Notes 40. Springer-Verlag, New-York.

    Google Scholar 

  • MADSEN, R.W., and FAIRBANKS, K.B. (1983). P values for multistage and sequential tests. Technometrics 25, 285–293.

    MATH  Google Scholar 

  • MONTAGNE, E. R. and N. D. SINGPURWALLA (1985). Robustness of sequential exponential life-testing procedures. J. Amer. Stat. Assoc. 80, 715–719.

    Article  MathSciNet  MATH  Google Scholar 

  • NELSON, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analysis. John Wiley & Sons, New York.

    Google Scholar 

  • SIEGMUND, D. (1985). Sequential Analysis - Tests and Confidence Intervals. Springer-Verlag New York Inc.

    Google Scholar 

  • WALD, A. (1947). Sequential Analysis. Dover Publications, Inc. New-York.

    Google Scholar 

  • WHITEHEAD, J., and JONES, D. (1979). The analysis of sequential clinical trials. Biometrika 66, 443–452.

    Article  MathSciNet  MATH  Google Scholar 

  • WHITEHEAD, J. (1983). The Design and Analysis of Sequential Clinical Trials.

    Google Scholar 

  • WIJSMAN, R. A. (1992). Direct computation of the performance of sequential procedures based on a sequence of t-statistics, with application to a confidence interval for μ/σ in a normal population. Seq. Anal. 11, 119–136.

    Article  MathSciNet  MATH  Google Scholar 

  • WOODROOFE, M. (1982). Nonlinear Renewal Theory in Sequential Analysis. CBMS-NSF Regional Conference Series in Applied Mathematics 39, SIAM, Philadelphia.

    Book  Google Scholar 

  • WOODROOFE, M. (1992). Estimation after sequential testing: a simple approach for a truncated sequential probality ratio test. Biometrika 79, 347–353.

    Article  MathSciNet  MATH  Google Scholar 

  • ZACKS, S. (1992). Introduction to Reliability Analysis: Probability Models and Statistical Methods. Springer- Verlag, New York.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glaz, J., Kenyon, J.R. (1996). Probability Approximations and Inequalities for Sequential Tests. In: Jewell, N.P., Kimber, A.C., Lee, ML.T., Whitmore, G.A. (eds) Lifetime Data: Models in Reliability and Survival Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5654-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5654-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4753-6

  • Online ISBN: 978-1-4757-5654-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics