Advertisement

Latent Class Models for Measuring

  • Clifford C. Clogg

Abstract

Most latent class analysis in contemporary social research is aimed at data reduction or “building clusters for qualitative data” (Formann, 1985, p. 87; see also Aitkin, Anderson, & Hinde, 1981). Some special restricted models in this area have of course been used to represent structural characteristics or behavioral processes (e.g., Clogg, 1981a; Goodman, 1974a). But a careful examination of the latent class models now available shows that none deal in a direct way with measurement, particularly if exacting standards are used to define how measurement should take place. Extensions and modifications of latent class models reported below are intended to remove this deficiency.

Keywords

Latent Class Latent Class Analysis Latent Trait Distributional Assumption Latent Class Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M., Anderson, D., and Hinde, J. (1981). Statistical modeling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144, 419–461.CrossRefGoogle Scholar
  2. Andersen, E. B. (1980). Discrete statistical models with social science applications. Amsterdam: North-Holland.Google Scholar
  3. Bartholomew, D. J. (1980). Scaling binary data using a factor model. Journal of the Royal Statistical Society, Series B, 42, 293–321.Google Scholar
  4. Becker, M. P., and Clogg, C. C. (1986). A note on approximating correlations from odds ratios. Unpublished manuscript.Google Scholar
  5. Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures. Psychometrika, 48, 493–517.CrossRefGoogle Scholar
  6. Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (1975). Discrete multivariate analysis: Theory and Practice. Cambridge, MA: MIT Press.Google Scholar
  7. Cliff, N. (1977). A theory of consistency of ordering generalizable to tailored testing. Psychometrika, 42, 375–399.CrossRefGoogle Scholar
  8. Clogg, C. C. (1979). Some latent structure models for the analysis of Likert-type data. Social Science Research, 8, 287–301.CrossRefGoogle Scholar
  9. Clogg, C. C. (1981a). Latent structure models of mobility. American Journal of Sociology, 86, 836–868.CrossRefGoogle Scholar
  10. Clogg, C. C. (1981b). New developments in latent structure analysis. In D. M. Jackson and E. F. Borgatta (Eds.), Factor analysis and measurement in sociological research (pp. 214–280 ). Beverly Hills, California: Sage.Google Scholar
  11. Clogg, C. C. (1982). Some models for the analysis of association in multi-way cross-classifications having ordered categories. Journal of the American Statistical Association, 77, 803–815.CrossRefGoogle Scholar
  12. Clogg, C. C. (1984). Some statistical models for analyzing why surveys disagree. In C. F. Turner and E. Margin (Eds.), Surveying subjective phenomena (Vol. 2, pp. 319–366 ). New York: Russell Sage Foundation.Google Scholar
  13. Clogg, C. C., and Goodman, L. A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association, 79, 762–771.CrossRefGoogle Scholar
  14. Clogg, C. C., and Goodman, L. A. (1985). Simultaneous latent structure analysis in several groups. In N. B. Tuma (Ed.), Sociological methodology 1985 (pp. 81–110 ). San Francisco: Jossey-Bass.Google Scholar
  15. Clogg, C. C., and Goodman, L. A. (1986). On scaling models applied to data from several groups. Psychometrika, 51, 123–135.CrossRefGoogle Scholar
  16. Clogg, C. C., and Sawyer, D. O. (1981). A comparison of alternative models for analyzing the scalability of response patterns. In S. Leinhardt (Ed.), Sociological methodology 1981 (pp. 240–280 ). San Francisco: Jossey-Bass.Google Scholar
  17. Clogg, C. C., and Shockey, J. W. (1987). Multivariate analysis of discrete data. In J. R. Nesselroade and R. B. Cattell (Eds.), Handbook of multivariate experimental psychology. New York: Plenum.Google Scholar
  18. Cochran, W. G. (1983). Planning and analysis of observational studies. New York: Wiley. Dayton, C. M., and Macready, G. A. (1980). A scaling model with response errors and intrinsically unscalable respondents. Psychometrika, 45, 343–356.Google Scholar
  19. Duncan, O. D. (1984). Rasch measurement: Further examples and discussion. In C. F. Turner and E. Martin (Eds.), Surveying subjective phenomena (Vol. 2, pp. 367–403 ). New York: Russell Sage Foundation.Google Scholar
  20. Fienberg, S. E. (1980). The analysis of cross-classified categorical data ( 2nd ed. ). Cambridge, MA: MIT Press.Google Scholar
  21. Forman, A. K. (1984). Die Latent-Class-Analyse. Weinheim and Basel: Beltz Verlag. Forman, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87–111.Google Scholar
  22. Goodman, L. A. (1974a). The analysis of systems of qualitative variables when some of the variables are unobservable: Part I. A modified latent structure approach. American Journal of Sociology, 79, 1179–1259.CrossRefGoogle Scholar
  23. Goodman, L. A. (1974b). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.CrossRefGoogle Scholar
  24. Goodman, L. A. (1975). A new model for scaling response patterns: An application of the quasi-independence concept. Journal of the American Statistical Association, 70, 755–768.CrossRefGoogle Scholar
  25. Goodman, L. A. (1978). Analyzing qualitative/ categorical data. Cambridge, MA: Abt Books.Google Scholar
  26. Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications having ordered categories. Journal of the American Statistical Association, 74, 537–552.CrossRefGoogle Scholar
  27. Goodman, L. A. (1984). The analysis of cross-classifications having ordered categories. Cambridge, MA: Harvard University Press.Google Scholar
  28. Guttman, L. (1950). The basis for scalogram analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P F Lazarsfeld, S. A. Star, and J. A. Clausen (Eds.), Measurement and prediction: Studies in social psychology in World War II (Vol. 4, pp. 60–90 ). Princeton, NJ: Princeton University Press.Google Scholar
  29. Haberman, S. J. (1974). Log-linear models for frequency tables with ordered classifications. Biometrics, 30, 589–600.CrossRefGoogle Scholar
  30. Haberman, S. J. (1979). Analysis of qualitative data: Vol. 2. New developments. New York: Academic Press.Google Scholar
  31. Joreskog, K. G., and Sorbom, D. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.Google Scholar
  32. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.CrossRefGoogle Scholar
  33. Lawley, D. N., and Maxwell, A. E. (1967). Factor analysis as a statistical method ( 2nd ed. ). New York: Elsevier.Google Scholar
  34. Lazarsfeld, P. F., and Henry, N. W. (1968). Latent structure analysis. Boston: Houghton Mifflin.Google Scholar
  35. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  36. Masters, G. N. (1985). A comparison of latent trait and latent class analyses of Likert-type data. Psychometrika, 50, 69–82.CrossRefGoogle Scholar
  37. McCutcheon, A. L. (1985). A latent class analysis of tolerance for nonconformity in the American public. Public Opinion Quarterly, 49, 474–488.CrossRefGoogle Scholar
  38. Mooijaart, A. (1982). Latent structure analysis for categorical variables. In K. G. Joreskog and H. Wold (Eds.), Systems under indirect observation. Amsterdam: North-Holland.Google Scholar
  39. Muthen, B. (1979). A structural probit model with latent variables. Journal of the American Statistical Association, 74, 807–811.Google Scholar
  40. Proctor, C. A. (1970). A probabilistic formulation and statistical analysis of Guttman scaling. Psychometrika, 44, 421–425.Google Scholar
  41. Rasch, G. (1966). An individualistic approach to item analysis. In P. F. Lazarsfeld and N. W. Henry (Eds.), Readings in mathematical social science. Chicago: Science Research Associates.Google Scholar
  42. Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests ( 2nd ed. ). Chicago: University of Chicago Press. (Original work published 1960 ).Google Scholar
  43. Rindskopf, D. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 85–97.CrossRefGoogle Scholar
  44. Schuman, H., and Presser, S. (1984). The assessment of “no opinion” in attitude surveys. In K. F. Schuessler (Ed.), Sociological methodology 1979 (pp. 241–275 ). San Francisco: Jossey-Bass.Google Scholar
  45. Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23–30.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Clifford C. Clogg
    • 1
  1. 1.Department of StatisticsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations