New Developments in Latent Class Theory

  • Rolf Langeheine


A feature common to most models considered in the first part of this book may be easily depicted by Figure 1. In latent trait models, the point of departure is a set of manifest categorical variables (indicators, items, say A, B, and C), which may be related to each other in some way (cf. the curved lines). The crucial assumption now is that these relationships are conceived as being due to some continuous latent variable X. That is, if the model holds, the relationships between the manifest variables will vanish and the structure will be depicted by the straight lines going from X to A, B, and C. Several people, however, have questioned whether this procedure is advisable in all instances. Latent trait models strive for a relatively sophisticated scaling property of the latent variable (most models aim at least at an interval scale) which often remains unused for subsequent interpretation of the data. In fact, we are often simply interested in certain groups or types of persons (see Rost, Chapter 7, this volume), that means that we need no more than a categorical or nominal latent variable. This is exactly what latent class models assume.


Latent Variable Latent Class Latent Class Analysis Markov Chain Model Latent Class Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, E. B. (1982). Latent structure analysis: A survey. Scandinavian Journal of Statistics, 9, 1–12.Google Scholar
  2. Anderson, T. W. (1954). On estimation of parameters in latent structure analysis. Psychometrika, 19, 1–10.CrossRefGoogle Scholar
  3. Bergan, J. R. (1983). Latent-class models in educational research. In E. W. Gordon (Ed.), Review of research in education 10. Washington, D.C.: American Educational Research Association.Google Scholar
  4. Bergan, J. R., and Stone, C. A. (1985). Latent class models for knowledge domains. Psychological Bulletin, 98, 166–184.CrossRefGoogle Scholar
  5. Blumen, I. M., Kogan, M., and McCarthy, P. J. (1955). The industrial mobility of labor as a probability process. Ithaca: Cornell University Press.Google Scholar
  6. Bye, B. V., and Schechter, E. S. (1986). A latent Markov model approach to the estimation of response errors in multivariate panel data. Journal of the American Statistical Association, 81, 375–380.CrossRefGoogle Scholar
  7. Clogg, C. C. (1977). Unrestricted and restricted maximum likelihood latent structure analysis: A manual for users (Working Paper 1977–09 ). University Park: Population Issues Research Center.Google Scholar
  8. Clogg, C. C. (1979). Some latent structure models for the analysis of Likert-type data. Social Science Research, 8, 287–301.CrossRefGoogle Scholar
  9. Clogg, C. C. (1981a). New developments in latent structure analysis. In D. J. Jackson & E. F. Borgatta (Eds.), Factor analysis and measurement in sociological research. London: Sage.Google Scholar
  10. Clogg, C. C. (1981b). Latent structure models of mobility. American Journal of Sociology, 86, 836–868.CrossRefGoogle Scholar
  11. Clogg, C. C. (1984). Some statistical models for analyzing why surveys disagree. In C. F. Turner & E. Martin (Eds.), Surveying subjective phenomena (Vol. 2 ). New York: Russell Sage Foundation.Google Scholar
  12. Clogg, C. C., and Goodman, L. A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association, 79, 762–771.CrossRefGoogle Scholar
  13. Clogg, C. C., and Goodman, L. A. (1985). Simultaneous latent structure analysis in several groups. In N. B. Tuma (Ed.), Sociological methodology 1985. San Francisco: Jossey-Bass.Google Scholar
  14. Clogg, C. C., and Sawyer, D. O. (1981). A comparison of alternative models for analyzing the scalability of response patterns. In S. Leinhardt (Ed.), Sociological methodology 1981. San Francisco: Jossey-Bass.Google Scholar
  15. Dayton, C. M., and Macready, G. B. (1976). A probabilistic model for validation of behavioral hierarchies. Psychometrika, 41, 189–204.CrossRefGoogle Scholar
  16. Dayton, C. M., and Macready, G. B. (1980). A scaling model with response errors and intrinsically unscalable respondents. Psychometrika, 45, 343–356.CrossRefGoogle Scholar
  17. Dayton, C. M., and Macready, G. B. (1983). Latent structure analysis of repeated classifications with dichotomous data. British Journal of Mathematical and Statistical Psychology, 36, 189–201.CrossRefGoogle Scholar
  18. Dillon, W. R., and Mulani, N. (1984). A probabilistic latent class model for assessing inter-judge reliability. Multivariate Behavioral Research, 19, 438–458.CrossRefGoogle Scholar
  19. Dillon, W. R., Madden, T. J., and Kumar, A. (1983). Analyzing sequential categorical data on dyadic interaction: A latent structure approach. Psychological Bulletin, 94, 564–583.CrossRefGoogle Scholar
  20. Formann, A. K. (1976a). Schätzung der Parameter in Lazarsfeld’s Latent-Class-Analysis (Research Bulletin No. 18 ). Wien: Institut für Psychologie der Universität Wien.Google Scholar
  21. Formann, A. K. (1976b). Latent-Class-Analyse polychotomer Daten (Research Bulletin No. 19 ). Wien: Institut für Psychologie der Universität Wien.Google Scholar
  22. Formann, A. K. (1978a). A note on parameter estimation for Lazarsfeld’s latent class analysis. Psychometrika, 43, 123–126.CrossRefGoogle Scholar
  23. Formann, A. K. (1978b). The latent class analysis of polytomous data. Biometrical Journal, 20, 755–771.Google Scholar
  24. Formann, A. K. (1982). Linear logistic latent class analysis. Biometrical Journal, 24, 171–190.CrossRefGoogle Scholar
  25. Formann, A. K. (1984). Die Latent-Class-Analyse. Weinheim: Beltz.Google Scholar
  26. Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87–111.Google Scholar
  27. Gibson, W. A. (1955). An extension of Anderson’s solution for the latent structure equations. Psychometrika, 20, 69–73.CrossRefGoogle Scholar
  28. Gibson, W. A. (1962). Extending latent class solutions to other variables. Psychometrika, 27, 73–81.CrossRefGoogle Scholar
  29. Goodman, L. A. (1974a). The analysis of systems of qualitative variables when some of the variables are unobservable. Part I-A modified latent structure approach. American Journal of Sociology, 79, 1179–1259.CrossRefGoogle Scholar
  30. Goodman, L. A. (1974b). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215–231.CrossRefGoogle Scholar
  31. Goodman, L. A. (1975). A new model for scaling response patterns: An application of the quasi-independence concept. Journal of the American Statistical Association, 70, 755–768.CrossRefGoogle Scholar
  32. Guttman, L. (1950). The basis for scalogram analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P. F. Lazarsfeld, S. A. Star, & J. A. Clausen (Eds.), Measurement and prediction: Studies in social psychology in World War II (Vol. IV ). Princeton: Princeton University Press.Google Scholar
  33. Haberman, S. J. (1979). Analysis of qualitative data: Vol. 2. New developments. New York: Academic Press.Google Scholar
  34. Haertel, E. (1984a). Detection of a skill dichotomy using standardized achievement test items. Journal of Educational Measurement, 21, 59–72.CrossRefGoogle Scholar
  35. Haertel, E. (1984b). An application of latent class models to assessment data. Applied Psychological Measurement, 8, 333–346.CrossRefGoogle Scholar
  36. Harper, D. (1972). Local dependence latent structure models. Psychometrika, 37, 53–59.CrossRefGoogle Scholar
  37. Langeheine, R. (1984). Neuere Entwicklungen in der Analyse latenter Klassen und latenter Strukturen. Zeitschrift für Sozialpsychologie, 15, 199–210.Google Scholar
  38. Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P F Lazarsfeld, S. A. Star, and J. A. Clausen (Eds.), Measurement and prediction: Studies in social psychology in World War II (Vol. IV ). Princeton: Princeton University Press.Google Scholar
  39. Lazarsfeld, P. F., and Dudman, J. (1951). The general solution of the latent class case. In P. F. Lazarsfeld (Ed.), The use of mathematical models in the measurement of attitudes. Santa Monica: RAND Corporation.Google Scholar
  40. Lazarsfeld, P. F., and Henry, N. W. (1968). Latent structure analysis. Boston: Houghton MifflinGoogle Scholar
  41. Macready, G. B., and Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99–120.CrossRefGoogle Scholar
  42. Macready, G. B., and Dayton, C. M. (1980). The nature and use of state mastery models. Applied Psychological Measurement, 4, 493–516.CrossRefGoogle Scholar
  43. Madansky, A. (1960). Determinantal methods in latent class analysis. Psychometrika, 25, 183–198.CrossRefGoogle Scholar
  44. Madden, T. J., and Dillon, W. R. (1982). Causal analysis and latent class models: An application to a communication hierarchy of effects model. Journal of Marketing Research, 19, 472–490.CrossRefGoogle Scholar
  45. McHugh, R. B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331–347.CrossRefGoogle Scholar
  46. McHugh, R. B. (1958). Note on “Efficient estimation and local identification in latent class analysis.” Psychometrika, 23, 273–274.CrossRefGoogle Scholar
  47. Poulsen, C. A. (1982). Latent structure analysis with choice modeling applications. Aarhus: Aarhus School of Business Administration and Economics.Google Scholar
  48. Proctor, C. H. (1970). A probabilistic formulation and statistical analysis of Guttman scaling. Psychometrika, 35, 73–78.CrossRefGoogle Scholar
  49. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
  50. Rindskopf, D. (1983). A general framework for using latent class analysis to test hierarchical and nonhierarchical learning models. Psychometrika, 48, 85–97.CrossRefGoogle Scholar
  51. Rindskopf, D. (1984). Linear equality restrictions in regression and loglinear models. Psychological Bulletin, 96, 597–603.CrossRefGoogle Scholar
  52. Taylor, M. C. (1983). The black-and-white model of attitude stability: A latent class examination of opinion and nonopinion in the American public. American Journal of Sociology, 89, 373–401.CrossRefGoogle Scholar
  53. Tuch, S. A. (1984). A multivariate analysis of response structure: Race attitudes, 1972–1977. Social Science Research, 13, 55–71.CrossRefGoogle Scholar
  54. Wiggins, L. M. (1955). Mathematical models for the analysis of multi-wave panels. Unpublished doctoral dissertation, Columbia University.Google Scholar
  55. Wigging, L. M. (1973). Panel analysis. Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Rolf Langeheine
    • 1
  1. 1.Institute for Science Education (IPN)University of KielKiel 1Federal Republic of Germany

Personalised recommendations