Latent Trait Models with Indicators of Mixed Measurement Level

  • Gerhard Arminger
  • Ulrich Küsters

Abstract

In this chapter we deal with the formulation and estimation of simultaneous equation models in metric latent endogenous variables that are connected to observed variables of any measurement level. The literature on this topic has focused on simultaneous equation models with metric (cf. Jöreskog & Sörbom, 1984) and ordinal indicators (Muthén, 1984). The use of ordinal indicators is based on an normal theory threshold concept implying an ordinal probit model. Concepts based on normal distribution theory are given up when qualitative variables are used as indicators for a latent metric variable (cf. the multinomial logit latent trait model of Bock, 1972).

Keywords

Latent Trait Marginal Likelihood Multiple Indicator Conditional Density Royal Statistical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M., and Rubin, D. B. (1985). Estimation and hypothesis testing in finite mixture models. Journal of the Royal Statistical Society, B47, 67–75.Google Scholar
  2. Amemiya, T. (1978a). On a two-step estimation of a multivariate logit model. Journal of Econometrics, 8, 13–21.CrossRefGoogle Scholar
  3. Amemiya, T. (1978b). The estimation of a simultaneous equation generalized probit model. Econometrica, 46, 1193–1205.CrossRefGoogle Scholar
  4. Amemiya, T. (1979). The estimation of a simultaneous equation tobit model. International Econc •nic Review, 20, 169–181.CrossRefGoogle Scholar
  5. Amemiya, T. (1984). Tobit models: A survey. Journal of Econometrics, 24, 3–61.Google Scholar
  6. Andersen, E. B. (1985). Estimating latent correlation between repeated testings. Psychometrika, 50, 3–16.CrossRefGoogle Scholar
  7. Anderson, J. A., and Philips, P. R. (1981). Regression, discrimination and measurement models of ordered categorical variables. Applied Statistics, 30, 22–31.CrossRefGoogle Scholar
  8. Arminger, G., and Küsters, U. (1985). Latent trait and correlation models with indicators of mixed measurement level. Preliminary manuscript prepared for the Thirteenth Symposium on Latent Trait and Latent Class Models in Educational Research, IPN Kiel.Google Scholar
  9. Arminger, G., and Küsters, U. (1987). New developments in latent variable measurement and structural equation models. Unpublished manuscript, University of Wuppertal.Google Scholar
  10. Bartholomew, D. J. (1981). Posterior analysis of the factor model. British Journal of Mathematical and Statistical Psychology, 34, 93–99.CrossRefGoogle Scholar
  11. Bartholomew, D. J. (1984). The foundations of factor analysis. Biometrika, 71, 221–232.CrossRefGoogle Scholar
  12. Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29–51.CrossRefGoogle Scholar
  13. Bock, R. D. (1975). Multivariate statistical methods in behavioral research. New York: McGraw-Hill.Google Scholar
  14. Bock, R. D., and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM-algorithm. Psychometrika, 40, 443–459.CrossRefGoogle Scholar
  15. Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5–32.CrossRefGoogle Scholar
  16. Daganzo, C. (1979). Multinomial probit-The theory and its application to demand forecasting. New York: Academic Press.Google Scholar
  17. Davis, P. J., and Rabinovitz, P. (1984). Methods of numerical integration. Orlando: Academic Press.Google Scholar
  18. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood of incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, B39, 1–38.Google Scholar
  19. Efron, B., and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika, 65, 475–487.Google Scholar
  20. Jöreskog, K. G., and Sörbom, D. (1984). LISREL vt Analysis of linear structural relationships by maximum likelihood, instrumental variables and least squares methods. Mooresville, Indiana: Scientific Software.Google Scholar
  21. Küsters, U. (1987). Hierarchische Mittelwert-und Kovarianzstrukturmodelle mit nichtmetrischen endogenen Variablen. Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
  22. Louis, T. A. (1982). Finding the observed information matrix when using the EM-algorithm. Journal of the Royal Statistical Society, B44, 226–233.Google Scholar
  23. Luenberger, D. G. (1984). Linear and nonlinear programming. Reading, Massachusetts: Addison-Wesley.Google Scholar
  24. Maddala, G. S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Maddala, G. S., and Lee, L. F. (1976). Recursive models with qualitative endogenous variables. Annals of Economic and Social Measurement, 5/4, 525–545.Google Scholar
  26. Manski, C. F., and McFadden, D. (1981). Alternative estimators and sample designs for discrete choice analysis. In C. F. Manski and D. McFadden (Eds.), Structural analysis of discrete data with econometric applications (pp. 2–50 ). Cambridge, Massachusetts: MIT Press.Google Scholar
  27. McCullagh, P. (1980). Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society, B2, 109–142.Google Scholar
  28. McDonald, R. P., and Krane, W. R. (1977). A note on local identifiability and degrees of freedom in the asymptotic likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 30, 198–203.CrossRefGoogle Scholar
  29. McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142 ). New York: Academic Press.Google Scholar
  30. McFadden, D. (1978). Modeling the choice of residential location. In A. Karlgvist (Ed.), Spatial interaction theory and residential location (pp. 75–96 ). Amsterdam: North-Holland.Google Scholar
  31. McFadden, D. (1981). Econometric models of probabilistic choice. In C. F. Manski & D. McFadden (Eds.), Structural analysis of discrete data with econometric applications (pp. 198–272 ). Cambridge, Massachusetts: MIT Press.Google Scholar
  32. McKelvey, R. D., and Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology, 4, 103–120.CrossRefGoogle Scholar
  33. Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551–560.CrossRefGoogle Scholar
  34. Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.CrossRefGoogle Scholar
  35. Muthén, B., and Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. Psychometrika, 46, 407–419.CrossRefGoogle Scholar
  36. Nelson, F. D. (1976). On a general computer algorithm for the analysis of models with limited dependent variables. Annals of Economic and Social Measurement, 5, 493–509.Google Scholar
  37. Olsson, U., Drasgow, F., and Dorans, N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47, 337–347.CrossRefGoogle Scholar
  38. Rothenberg, T. J. (1971). Identification in parametric models. Econometrica, 39, 577–591.CrossRefGoogle Scholar
  39. Schmidt, P. (1976). Econometrics. New York: Marcel Dekker.Google Scholar
  40. Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley.CrossRefGoogle Scholar
  41. Stroud, A., and Secrest, D. (1966). Gaussian quadrature formulas. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Gerhard Arminger
    • 1
  • Ulrich Küsters
    • 1
  1. 1.Department of EconomicsUniversity of WuppertalWuppertal 1Federal Republic of Germany

Personalised recommendations