Testing a Latent Trait Model

  • Arnold L. van den Wollenberg

Abstract

Within the domain of latent trait models the Rasch model (Rasch, 1960) takes a prominent place. This fact can be accounted for by the special characteristics of the model deriving from specific objectivity. As a consequence, this one-parameter logistic model, as it is also called, has been studied extensively for the past decade. Also with respect to model testing the Rasch model has been studied more thoroughly than other latent trait models. For this reason we will concentrate in the present paper on testing the Rasch model. Most of the points made with respect to the Rasch model apply to other latent trait models as well.

Keywords

Latent Trait Item Parameter Latent Trait Model Estimate Item Parameter Subject Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allerup, P., and Sorber, G. (1977). The Rasch model for questionnaires. Copenhagen: Dansk Paedagogiske Institut.Google Scholar
  2. Andersen, E. B. (1973a). Conditional inference and models for measuring. Unpublished doctoral dissertation, Mentalhygiejnisk Forsknings Institut, Copenhagen.Google Scholar
  3. Andersen, E. B. (1973b). A goodness of fit test for the Rasch model. Psychometrika, 38, 123–140.CrossRefGoogle Scholar
  4. Fischer, G. H. (1974). Einführung in die Theorie psychologischer Tests. Bem: Huber.Google Scholar
  5. Fischer, G. H., and Scheiblechner, H. H. (1970). Algorithmen und Programmen für das probabilistische Testmodell von Rasch. Psychologische Beiträge, 12, 23–51.Google Scholar
  6. Formann, A. K. (1981). Über die Verwendung von Items als Teilungskriterium für Modellkontrollen im Modell von Rasch. Zeitschrift für Experimentelle und Angewandte Psychologie, 28, 541–560.Google Scholar
  7. Glas, C. A. W. (1981). Het Rasch model bij data in een onvolledig design. Unpublished master’s thesis, Utrecht.Google Scholar
  8. Gustafsson, J. E. (1979). PML: A computer program for conditional estimation and testing in the Rasch model for dichotomous items (Report No. 85 ). Gothenburg: Institute of Education, University of Gothenburg.Google Scholar
  9. Gustafsson, J. E. (1980). Testing and obtaining fit of data to the Rasch model. British Journal of Mathematical and Statistical Psychology, 33, 205–233.CrossRefGoogle Scholar
  10. Hambleton, R. K., and Swaminathan H. (1985). A look at psychometrics in The Netherlands. Nederlands Tijdschrift voor de Psychologie, 40, 446–451.Google Scholar
  11. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223–245.CrossRefGoogle Scholar
  12. Lord, F. M., and Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
  13. Martin-Lof, P. (1973). Statistika Modeller, Anteckningar fran seminarier Lasaret 1969–1970 utarbetade av Rolf Sunberg obetydligt andrat nytryk, oktober 1973. Stockholm: Institutet for Forsakringsmatematik och Matematisk vid Stockholms Universitet.Google Scholar
  14. Martin-Lof, P. (1974). The notion of redundancy and its use as a quantitative measure of the discripancy between a statistical hypothesis and a set of observational data. Scandinavian Journal of Statistics, 1, 3–18.Google Scholar
  15. Molenaar, I. W. (1983). Some improved diagnostics for failure of the Rasch model, Psychometrika, 48, 49–72.CrossRefGoogle Scholar
  16. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Kopenhagen: Nielsen & Lydiche.Google Scholar
  17. Stelzl, I. (1979). Ist der Modelltest des Rasch-Modells geeignet, Homogenitatshypothesen zu prufen? Ein Bericht über Simulationsstudien mit inhomogenen Daten. Zeitschrift für experimentelle und angewandte Psychologie, 26(4), 652–672.Google Scholar
  18. Wollenberg, A. L. van den (1979). The Rasch model and time limit tests. Unpublished doctoral dissertation, Studentenpers, Nijmegen.Google Scholar
  19. Wollenberg, A. L. van den. (1980). On the Wright—Panchapakesan goodness of fit test for the Rasch model (Report 80MAOZ). Nijmegen: Katholieke Universiteit.Google Scholar
  20. Wollenberg, A. L. van den. (1982a). A simple and effective method to test the dimensionality axiom of the Rasch model. Applied Psychological Measurement, 6, 83–91.CrossRefGoogle Scholar
  21. Wollenberg, A. L. van den. (1982b). Two new test statistics for the Rasch model. Psychometrika, 47, 123–139.CrossRefGoogle Scholar
  22. Wollenberg, A. L. van den. (1982c). On the applicability of the Q2 test for the Rasch model. Kwantitatieve Methoden, 5, 30–55.Google Scholar
  23. Wright, B. D., and Panchapakesan, N. A. (1969). A procedure for sample-free item analysis. Educational and Psychological Measurement, 29, 23–37.CrossRefGoogle Scholar
  24. Zwinderman, A. H., and Wollenberg, A. L. van den (in preparation). Heuristic procedures and descriptive measures for inspecting the fit of the Rasch model.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Arnold L. van den Wollenberg
    • 1
  1. 1.Department of Mathematical PsychologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations