Skip to main content

Plasma Lasers Using Transitions of Diatomic Dissociating Molecules

  • Chapter
  • 21 Accesses

Part of the book series: The Lebedev Physics Institute Series ((LPIS))

Abstract

Attention was first brought to the use of a recombination plasma as a laser medium by Gudzenko and Shelepin [1]. Lasers using a recombining plasma were subsequently called plasma lasers. An alternative concept is the gas laser in which lasing takes place during ionization of the gas. It may be said that the fundamental qualitative difference between plasma and gas lasers is that their active media deviate from thermodynamic equilibrium in opposite senses: In a gas laser the electrons are overheated (that is, the temperature Te of the free electrons in the plasma is greater than the effective equilibrium temperature Teq corresponding to the actual degree of ionization [2]) while in a plasma laser the electrons are supercooled (that is, Te < Teq). This basic difference determines the methods for creating the lasing medium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. L. I. Gudzenko and L. A. Shelepin, Zh. Éksp. Teor. Fiz., 45: 1445 (1963).

    Google Scholar 

  2. L. I. Gudzenko, V. V. Evstigneev, Yu. I. Syts’ko, S. S. Filippov, and S. I. Yakovlenko, Preprint IPM, No. 63 (1971).

    Google Scholar 

  3. F. G. Houtermans, Rely. Phys. Acta, 33: 933 (1960).

    Google Scholar 

  4. M. M. Litvak and R. J. Carbone, Solid State Res. Lincoln Lab. Mass. Inst. Technol., No. 4, p. 29 (1964).

    Google Scholar 

  5. R. J. Carbone and M. M. Litvak, Solid State Res. Lincoln Lab. Mass. Inst. Technol., No. 2, p. 21 (1965).

    Google Scholar 

  6. R. J. Carbone and M. M. Litvak, J. Appl. Phys., 39: 2413 (1968).

    Article  ADS  Google Scholar 

  7. A. J. Palmer, J. Appl. Phys., 41: 438 (1970).

    Article  ADS  Google Scholar 

  8. N. G. Basov, O. V. Bogdankevich, V. A. Danilychev, G. N. Kashnikov, O. M. Kerimov, and N. P. Lantsov, Kratk. Soobshch. Fiz., No. 7, p. 68 (1970).

    Google Scholar 

  9. N. G. Basov, V. A. Danilychev, Yu. M. Popov, and D. D. Khodkevich, Pis’ma Zh. Éksp. Teor. Fiz., 12: 473 (1970).

    Google Scholar 

  10. H. A. Koehler, L. J. Ferderber, D. L. Redhead, and P. J. Ebert, Appl. Phys. Lett. 21: 198 (1972).

    Article  ADS  Google Scholar 

  11. H. A. Koehler, L. J. Ferderber,, D. L. Redhead, and P. J. Ebert, Phys. Rev., A9: 768 (1974).

    Google Scholar 

  12. P. J. Ebert, L. J. Ferderber, H. A. Koehler, R. W. Kuckuck, and D. L. Redhead, IEEE J, Quant. Electron., QE-10: 736 (1974).

    Google Scholar 

  13. Wayne A. Johnson and J. B. Gerardo, Conference on Laser Engineering andApplications, New York (1973), Digest of Papers, p. 29.

    Google Scholar 

  14. Wayne A. Johnson and J. B. Gerardo, XIth International Conference on Phenomena in Ionized Gases, Prague (1973), Contributed Papers, p. 164.

    Google Scholar 

  15. J. B. Gerardo and Wayne A. Johnson, J. Appl. Phys., 44: 4120 (1973).

    Article  ADS  Google Scholar 

  16. Wayne A. Johnson and J. B. Gerardo, J. Appl. Phys., 45: 867 (1974).

    Article  ADS  Google Scholar 

  17. P. W. Hoff, J. C. Swingle, and C. K. Rhodes, Appl. Phys. Lett., 23: 245 (1973).

    Article  ADS  Google Scholar 

  18. P. W. Hoff, J. C. Swingle, and C. K. Rhodes, Opt. Commun., 8: 128 (1973).

    Article  ADS  Google Scholar 

  19. W. M. Hughes, J. Shannon, A. Kolb, E. Ault, and M. Bhaumik, Appl. Phys. Lett., 23: 385 (1973).

    Article  ADS  Google Scholar 

  20. E. R. Ault, M. L. Bhaumik, W. M. Hughes, R. J. Jensen, C. R. Robinson, A. C. Kolb, and J. Shannon, IEEE J. Quant. Electron., QE-9: 1031 (1973).

    Google Scholar 

  21. W. M. Huges, J. Shannon, and R. Hunter, Appl. Phys. Lett., 24: 488 (1974).

    Article  ADS  Google Scholar 

  22. W. M. Huges, J. Shannon, and R. Hunter, Appl. Phys. Lett., 25: 85 (1974).

    Article  ADS  Google Scholar 

  23. S. C. Wallace, R. T. Hodgson, and R. W. Dreyfus, Appl. Phys. Lett., 23: 672 (1973).

    Article  ADS  Google Scholar 

  24. S. C. Wallace, and R. W. Dreyfus, Appl. Phys. Lett., 25: 494 (1974).

    Article  ADS  Google Scholar 

  25. M. Novaro and F. Lagarde, C. R. Acad. Sci., Ser. B., 277: 671 (1973).

    Google Scholar 

  26. C. V. Heer, Phys. Lett., A31: 160 (1970).

    Article  Google Scholar 

  27. M. M. Mkrtchan and V. T. Platonenko, Pis’ma Zh. Éksp. Teor. Fiz., 17: 28 (1973).

    Google Scholar 

  28. L. L Gudzenko, and S. I. Yakovlenko, Dokl. Akad. Nauk SSSR, 207: 1085 (1972).

    Google Scholar 

  29. V. L. Borovich and V. S. Zuev, Zh. Éksp. Teor. Fiz., 58: 1794 (1970).

    Google Scholar 

  30. V. L. Borovich, V. S. Zuev, and D. B. Stavrovskii, Kvant. Electron., 1: 2048 (1974).

    Google Scholar 

  31. A. A. Belyaeva, R. B. Dushin, E. V. Nikiforov, Yu. B. Predtechenskii, and L. D. Shcherba, Dokl. Akad. Nauk SSSR, 198: 1117 (1971).

    Google Scholar 

  32. S. E. Harris, A. H. Kung, E. A. Stappaerts, and J. F. Young, Appl. Phys. Lett., 23: 232 (1973).

    Article  ADS  Google Scholar 

  33. R. S. Mulliken, J. Chem. Phys., 52: 5170 (1970).

    Article  ADS  Google Scholar 

  34. R. S. Mulliken, Radiat. Res., 59: 357 (1974).

    Article  Google Scholar 

  35. Tables de constantes et données numériques, Vol. 17, Pergamon Press (1970).

    Google Scholar 

  36. D. C. Lorents, Radiat. Res., 59: 438 (1974).

    Article  Google Scholar 

  37. P. Moerman, R. Boucique, and P. Mortier, Phys. Lett., A49: 179 (1974).

    Article  Google Scholar 

  38. E. V. George and C. K. Rhodes, Appl. Phys. Lett., 23: 139 (1973).

    Article  ADS  Google Scholar 

  39. C. W. Werner, E. V. George, P. W. Hoff, and C. K. Rhodes, Appl. Phys. Lett., 25: 235 (1974).

    Article  ADS  Google Scholar 

  40. L. I. Gudzenko, I. S. Lakoba, and S. L Yakovlenko, Zh. Éksp. Teor. Fiz., 67: 2022 (1974).

    ADS  Google Scholar 

  41. S. I. Yakovlenko, Preprint IAÉ, No. 2174 (1972).

    Google Scholar 

  42. E. H. Fink and F. J. Commes, Chem. Phys. Lett., 30: 267 (1975).

    Article  ADS  Google Scholar 

  43. A. B. Callear and M. R. E. Hedges, Trans. Faraday Soc., 66: 2921 (1970).

    Article  Google Scholar 

  44. L. I. Gudzenko and S. L Yakovlenko, Zh. Éksp. Teor. Fiz., 62: 1686 (1972).

    Google Scholar 

  45. J. McDaniel, Collision Phenomena in Ionized Gases, Wiley (1964).

    Google Scholar 

  46. C. K. Rhodes, IEEE J. Quant. Electron., QE-10: 153 (1974).

    Google Scholar 

  47. A. Gedanken, J. Jortner, B. Raz, and A. Szöke, J. Chem. Phys., 57: 3456 (1972).

    Article  ADS  Google Scholar 

  48. L. I. Gudzenko, L. A. Shelepin, and S. I. Yakovlenko, Usp. Fiz. Nauk, 114: 457 (1974).

    Article  ADS  Google Scholar 

  49. L. L Gudzenko and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 12, p. 13 (1975).

    Google Scholar 

  50. L. S. Frost and A. V. Phelps, Phys. Rev., A136: 1538 (1964).

    Article  ADS  Google Scholar 

  51. R. M. Hill, D. J. Eckstrom, D. C. Lorents, and H. H. Nakano, Appl. Phys. Lett., 23: 373 (1973).

    Article  ADS  Google Scholar 

  52. J. Gray and R. H. Tomlinson, Chem. Phys. Lett., 4: 251 (1969).

    Article  ADS  Google Scholar 

  53. C. J. W. Johns, J. Mol. Spectrosc., 36: 488 (1970).

    Article  ADS  Google Scholar 

  54. H. H. Michels and E. F. Harris, J. Chem. Phys., 39: 1464 (1963).

    Article  ADS  Google Scholar 

  55. S. A. Slocomb, W. H. Miller, and H. F. Shaefer, J. Chem. Phys., 55: 926 (1971).

    Article  ADS  Google Scholar 

  56. V. Bondybey, P. K. Pearson, andH. F. Shaefer, J. Chem. Phys., 57: 1123 (1972).

    Article  ADS  Google Scholar 

  57. H. P. Weise, H. U. Mittmann, A. Ding, and A. Z. Henglein, Naturforscher, 26a: 1112, 1123 (1971).

    ADS  Google Scholar 

  58. C. Kubach and V. Sida, J. Phys., B6: L289 (1973).

    ADS  Google Scholar 

  59. L. V. Gurvich et al., in: The Dissociation Energy of Chemical Bonds [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  60. Yu. N. Belyaev, N. V. Kamyshov, and V. B. Leonas, Khim. Vys. nerg., 4: 260 (1970).

    Google Scholar 

  61. L. I. Gudzenko and L S. Lakoba, Kratk. Soobshch. Fiz., No. 6, p. 3 (1975).

    Google Scholar 

  62. M. B. Mulleur, R. L. Matcha, and E. F. Hayes, J. Chem. Phys., 60: 674 (1974).

    Article  ADS  Google Scholar 

  63. L. I. Gudzenko, Yu. B. Konev, and V. S. Marchenko, Kratk. Soobshch Fiz., No. 9, p. 23 (1975).

    Google Scholar 

  64. L. I. Gudzenko, L. A. Kulevskii, L S. Lakoba, and A. A. Medvedev, Kratk. Soobshch. Fiz., No. 1, p. 21 (1976).

    Google Scholar 

  65. N. D. Smith, Phys. Rev., A49: 345 (1936).

    Article  ADS  Google Scholar 

  66. G. Grandsire, Ann. Astrophys., 17: 287 (1954).

    ADS  Google Scholar 

  67. .] F. Liebman and L. C. Allen, J. Am. Chem. Soc., 92: 3539 (1970).

    Article  Google Scholar 

  68. J. Berkowitz and W. A. Shupka, Chem. Phys. Lett., 7: 447 (1970).

    Article  ADS  Google Scholar 

  69. M. F. Golde and B. A. Truch, Chem. Phys. Lett., 29: 486 (1974).

    Article  ADS  Google Scholar 

  70. J. E. Velazco and D. W. Setser, J. Chem. Phys., 62: 1990 (1975).

    Google Scholar 

  71. L. A. Kuznetsov, Yu. Ya. Kuzyakov, V. A. Shpanskii, and V. M. Khutoretskii, Vestn. Mosk. Gos. Univ., Ser. II, Khim., No. 3, p. 19 (1964).

    Google Scholar 

  72. B. Lie and H. F. Shaefer, J. Chem. Phys., 55: 2369 (1971).

    Article  ADS  Google Scholar 

  73. D. H. Liskow, H. F. Shaefer, P. S. Bagus, and B. Liu, J. Am. Chem. Soc., 95: 4057 (1973).

    Article  Google Scholar 

  74. D. R. Herschbach, Adv. Chem. Phys., 10: 319 (1966).

    Google Scholar 

  75. J. E. Velazco and D. W. Setser, Chem. Phys. Lett., 25: 197 (1974).

    Article  ADS  Google Scholar 

  76. J. J. Ewing and C. A. Brau, Appl. Phys. Lett., 27: 350 (1975).

    Article  ADS  Google Scholar 

  77. S. K. Searle and G. A. Hart, Appl. Phys. Lett., 27: 243 (1975).

    Article  ADS  Google Scholar 

  78. L. I. Gudzenko, I. S. Slesarev, and S. I. Yakovlenko, Zh. Éksp. Teor. Fiz., 45: 1934 (1975).

    Google Scholar 

  79. C. B. Collins, A. J. Cuningham, S. M. Curry, B. W. Johnson, and M. Stockton, Appl. Phys. Lett., 24:245 (1974); 24: 477 (1974).

    Article  Google Scholar 

  80. H. T. Powell, J. R. Murray, and C. K. Rhodes, Appl. Phys. Lett., 25: 730 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Basov, N.G. (1978). Plasma Lasers Using Transitions of Diatomic Dissociating Molecules. In: Basov, N.G. (eds) The Kinetics of Simple Models in the Theory of Oscillations. The Lebedev Physics Institute Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5628-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5628-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5630-2

  • Online ISBN: 978-1-4757-5628-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics