Iterative Methods for the Solution of Large Systems of Linear Equations. Some Further Methods

  • J. Stoer
  • R. Bulirsch


Many problems in practice require the solution of very large systems of linear equations Ax = b in which the matrix A, fortunately, is sparse, i.e., has relatively few nonvanishing elements. Systems of this type arise, e.g., in the application of difference methods or finite-element methods to the approximate solution of boundary-value problems in partial differential equations. The usual elimination methods (see Chapter 4) cannot normally be applied here, since without special precautions they tend to lead to the formation of more or less dense intermediate matrices, making the number of arithmetic operations necessary for the solution much too large, even for present-day computers, not to speak of the fact that the intermediate matrices no longer fit into the usually available computer memory.


Iterative Method Large System Model Problem Spectral Radius Relaxation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 8

  1. Axelsson, O.: Solution of linear systems of equations—iterative methods. In: Barker (1977), 1–51 (1976).Google Scholar
  2. Barker, V. A., Ed.: Sparse Matrix Techniques. Lecture Notes in Mathematics 572. Berlin, Heidelberg, New York: Springer-Verlag, 1977.zbMATHGoogle Scholar
  3. Buneman, O.: A compact non-iterative Poisson solver. Stanford University, Institute for Plasma Research, Report No. 294, Stanford, Calif. 1969.Google Scholar
  4. Buzbee, B. L., Dorr, F. W.: The direct solution of the biharmonic equation on rectangular regions and the Poisson equation on irregular regions. SIAM J. Numer. Anal. 11, 753–763 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  5. Buzbee, B. L., Dorr, F. W., George, J. A., Golub, G. H.: The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8, 722–736 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  6. Buzbee, B. L., Dorr, F. W., Golub, G. H., Nielson, C. W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  7. Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs: Prentice-Hall 1967.zbMATHGoogle Scholar
  8. Hackbusch, W.: Ein iteratives Verfahren zur schnellen Auflösung elliptischer Randwertprobleme. Mathematical Institute of the University of Cologne, Report 76–12, 1976.Google Scholar
  9. Hestenes, M. R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. Nat. Bur. Standards J. Res. 49, 409–436 (1952).MathSciNetzbMATHGoogle Scholar
  10. Hockney, R. W.: The potential calculation and some applications, Methods of Computational Physics 9, 136–211. New York, London: Academic Press 1969.Google Scholar
  11. Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell Publ. Co. (1964).zbMATHGoogle Scholar
  12. Reid, J. K., Ed.: Large Sparse Sets of Linear Equations. London, New York: Academic Press 1971.zbMATHGoogle Scholar
  13. Reid, J. K., Ed.: On the method of conjugate gradients for the solution of large sparse systems of linear equations, In: Reid, Ed. (1971), 231–252 (1971).Google Scholar
  14. Rose, D. J., Willoughby, R. A., Eds.: Sparse Matrices and Their Applications. New York: Plenum Press 1972.Google Scholar
  15. Schröder, J., Trottenberg, U.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben I. Numer. Math. 22, 37–68 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  16. Schröder, J., Trottenberg, U., Reutersberg, H.: Reduktionsverfahren für Differenzengleichungen bei Randwertaufgaben II. Numer. Math. 26, 429–459 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  17. Swarztrauber, P. N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19, 490–501 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  18. Tewarson, R. P.: Sparse Matrices, New York: Academic Press 1973.zbMATHGoogle Scholar
  19. Varga, R. S.: Matrix Iterative Analysis. Series in Automatic Computation. Englewood Cliffs: Prentice-Hall 1962.Google Scholar
  20. Wachspress, E. L.: Iterative Solution of Elliptic Systems and Application to the Neutron Diffusion Equations of Reactor Physics. Englewood Cliffs: Prentice-Hall 1966.Google Scholar
  21. Widlund, O., Proskurowski, W.: On the numerical solution of Helmholtz’s equation by the capacitance matrix method. ERDA Rep. C 00–3077–99, Courant Institute of Mathematical Sciences, New York University 1975.Google Scholar
  22. Wilkinson, J. H., Reinsch, G.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer-Verlag 1971.Google Scholar
  23. Wittmeyer, H.: Über die Lösung von linearen Gleichungssystemen durch Iteration. Z. Angew. Math. Mech. 16, 301–310 (1936).CrossRefzbMATHGoogle Scholar
  24. Young, D. M.: Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. New York: Academic Press 1971.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. Stoer
    • 1
  • R. Bulirsch
    • 2
  1. 1.Institut für Angewandte MathematikUniversität Würzburg am HublandWürzburgFederal Republic of Germany
  2. 2.Institut für MathematikTechnische UniversitätMünchenFederal Republic of Germany

Personalised recommendations