Skip to main content

Ordinary Differential Equations

  • Chapter
Introduction to Numerical Analysis
  • 1007 Accesses

Abstract

Many problems in applied mathematics lead to ordinary differential equations. In the simplest case one seeks a differentiable function y = y(x) of one real variable x, whose derivative y’(x) is to satisfy an equation of the form y’(x) = f(x, y(x)), or more briefly,

$$y' = f\left( {x,y} \right); $$
((7.0.1))

one then speaks of an ordinary differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 7

  • Babuška, I., Prager, M., Vitasék, E.: Numerical Processes in Differential Equations. New York: Interscience (1966).

    MATH  Google Scholar 

  • Bulirsch, R.: Die Mehrzielmethode zur numerischen Lösung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung. Report of the Carl-Cranz-Gesellschaft. 1971.

    Google Scholar 

  • Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math. 8, 1–13 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  • Bulirsch, R., Stoer, J., Deuflhard, P.: Numerical solution of nonlinear two-point boundary value problems 1. Handbook Series Approximation, Numer. Math. (to appear).

    Google Scholar 

  • Butcher, J. C.: On Runge-Kutta processes of high order. J. Austral Math. Soc. 4, 179–194 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G., Schultz, M. H., Varga, R. S.: Numerical methods of high order accuracy for nonlinear boundary value problems. Numer. Math. 9, 394–430 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G., Schultz, M. H., Varga, R. S., Wagschal, C.: Multipoint Taylor formulas and applications to the finite element method. Numer. Math. 17, 84–100 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  • Clark, N. W.: A study of some numerical methods for the integration of systems of first order ordinary differential equations. Report ANL-7428, Argonne National Laboratory 1968.

    Book  Google Scholar 

  • Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. New York: McGraw-Hill (1955).

    MATH  Google Scholar 

  • Collatz, L.: The Numerical Treatment of Differential Equations. Berlin: Springer-Verlag (1960).

    Book  MATH  Google Scholar 

  • Collatz, L.: Functional Analysis and Numerical Mathematics. New York: Academic Press (1966).

    Google Scholar 

  • Collatz, L., Nicolovius, R.: Rand und Eigenwertprobleme bei gewöhnlichen und partiellen Differentialgleichungen und Integralgleichungen. In Sauer and Szabó (1969), 293–670.

    Google Scholar 

  • Crane, P. J., Fox, P. A.: A comparative study of computer programs for integrating differential equations. Numer. Math. Computer Program Library One—Basic Routines for General Use (Bell Telephone Laboratories Inc., New Jersey) 2, No. 2 (1969).

    Google Scholar 

  • Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956).

    MathSciNet  MATH  Google Scholar 

  • Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Roy. Inst. Tech. (Stockholm), No. 130 (1959).

    MATH  Google Scholar 

  • Deuflhard, P.: A stepsize control for continuation methods with special application to multiple shooting techniques. Report TUM-Math.-7627, Technical University of Munich 1976.

    Google Scholar 

  • Diekhoff, H.-J., Lory, P., Oberle, H. J., Pesch, H.-J., Rentrop, P., Seydel, R.: Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting. Numer. Math. 27, 449–469 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  • Enright, W. H., Hull, T. E., Lindberg, B.: Comparing numerical methods for stiff systems of ODEs. Tech. Rep. No. 69, Department of Computer Science, University of Toronto, Sept. 1974.

    Google Scholar 

  • Fehlberg, E.: New high-order Runge-Kutta formulas with stepsize control for systems of first- and second-order differential equations. Z. Angew. Math. Mech. 44, T17–T29 (1964).

    Article  MathSciNet  Google Scholar 

  • Fehlberg, E.: New high-order Runge-Kutta formulas with an arbitrarily small truncation error. Z. Angew. Math. Mech. 46, 1–16 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  • Fehlberg, E.: Klassische Runge-Kutta Formeln fünfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing 4, 93–106 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  • Fehlberg, E.: Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6, 61–71 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  • Fröberg, C. E.: Introduction into Numerical Analysis. London: Addison-Wesley (1966).

    Google Scholar 

  • Gantmacher, F. R.: Matrizenrechnung II. Berlin: VEB Deutscher Verlag der Wissenschaften (1969).

    Google Scholar 

  • Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, N.J.: Prentice-Hall 1971.

    MATH  Google Scholar 

  • George, J. A.: Computer implementation of the finite element method. Report CS 208, Computer Science Department, Stanford University 1971.

    Google Scholar 

  • George, J. A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal 10, 345–363 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  • Gragg, W.: Repeated extrapolation to the limit in the numerical solution of ordinary differential equations. Thesis, UCLA 1963.

    Google Scholar 

  • Gragg, W.: On extrapolation algorithms for ordinary initial value problems. J. SIAM Numer. Anal. Ser. B 2, 384–403 (1965).

    MathSciNet  Google Scholar 

  • Grigorieff, R. D.: Numerik gewöhnlicher Differentialgleichungen 1, 2. Stuttgart: Teubner 1972, 1977.

    Google Scholar 

  • Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. New York: John Wiley 1962.

    MATH  Google Scholar 

  • Hestenes, M. R.: Calculus of Variations and Optimal Control Theory. New York: John Wiley 1966.

    MATH  Google Scholar 

  • Heun, K.: Neue Methode zur approximativen Integration der Differentialgleichungen einer unabhängigen Variablen. Z. Math. Phys. 45, 23–38 (1900).

    MATH  Google Scholar 

  • Hindmarsh, A. C.: GEAR-Ordinary differential equation solver. UCID-30001, Rev. 3, Lawrence Livermore Laboratory, University of California, Livermore, 1974.

    Google Scholar 

  • Hull, T. E., Enright, W. H., Fellen, B. M., Sedgwick, A. E.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972). [Errata, ibid. 11, 681 (1974).]

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacson, E., Keller, H. B.: Analysis of Numerical Methods. New York: John Wiley 1966.

    MATH  Google Scholar 

  • Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with step size control for stiff ordinary differential equations. Numer. Math. 33, 55–68, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  • Keller, H. B.: Numerical Methods for Two-Point Boundary-Value Problems. London: Blaisdell 1968.

    MATH  Google Scholar 

  • Krogh, F. T.: Changing step size in the integration of differential equations using modified divided differences. In: Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations, 22–71. Lecture Notes in Mathematics, No. 362. New York: Springer-Verlag 1974.

    Chapter  Google Scholar 

  • Kutta, W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46, 435–453 (1901).

    MATH  Google Scholar 

  • Na, T. Y., Tang, S. C.: A method for the solution of conduction heat transfer with non-linear heat generation. Z. Angew. Math. Mech. 49, 45–52 (1969).

    Article  MATH  Google Scholar 

  • Oden, J. T., Reddy, J. N.: An Introduction to the Mathematical Theory of Finite Elements. New York: Wiley 1976.

    MATH  Google Scholar 

  • Osborne, M. R.: On shooting methods for boundary value problems. J. Math. Anal. Appl. 27, 417–433 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  • Runge, C.: Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 46, 167–178 (1895).

    Article  MathSciNet  MATH  Google Scholar 

  • Sauer, R., Szabó, I., Eds.: Mathematische Hilfsmittel des Ingenieurs, Part II. Berlin: Springer-Verlag 1969.

    MATH  Google Scholar 

  • Sedgwick, A.: An effective variable order variable step Adams method. Technical Report No. 53, University of Toronto, Department of Computer Science 1973.

    Google Scholar 

  • Shampine, L. F., Gordon, M. K.: Computer Solution of Ordinary Differential Equations. The Initial Value Problem. San Francisco: Freeman 1975.

    MATH  Google Scholar 

  • Shampine, L. F., Gordon, M. K., Watts, H. A., Davenport, S. M.: Solving nonstiff ordinary differential equations—the state of the art. SIAM Review 18, 376–411 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • Shanks, E. B.: Solution of differential equations by evaluation of functions. Math. Comp. 20, 21–38 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  • Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations. New York, Heidelberg, Berlin: Springer-Verlag 1973.

    Book  MATH  Google Scholar 

  • Strang, G., Fix, G. J.: An Analysis of the Finite Element Method. Englewood Cliffs, N.J.: Prentice-Hall 1973.

    MATH  Google Scholar 

  • Törnig, W.: Anfangswertprobleme bei gewöhnlichen und partiellen Differentialgleichungen. In: Sauer and Szabó (1969), 1–290 (1969).

    Google Scholar 

  • Troesch, B. A.: Intrinsic difficulties in the numerical solution of a boundary value problem. Internal Report NN-142, TRW, Inc. Redondo Beach, California, January 29, 1960.

    Google Scholar 

  • Troesch, B. A.: A simple approach to a sensitive two-point boundary value problem. J. Computational Phys. 21, 279–290 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • Willoughby, R. A., Ed.: Stiff Differential Systems. New York and London: Plenum Press 1974.

    Google Scholar 

  • Zlámal, M.: On the finite element method. Numer. Math. 12, 394–409 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  • Zlámal, M.: On some finite element procedures for solving second order boundary value problems. Numer. Math. 14, 42–48 (1969).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoer, J., Bulirsch, R. (1980). Ordinary Differential Equations. In: Introduction to Numerical Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5592-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5592-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5594-7

  • Online ISBN: 978-1-4757-5592-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics