Advertisement

Systems of Linear Equations

  • J. Stoer
  • R. Bulirsch

Abstract

In this chapter direct methods for solving systems of linear equations
$$ Ax = b,A = \left[ \begin{array}{l} {a_{11}}...{a_{1n}}\\ \vdots \quad \quad \vdots \\ {a_{n1}}... \end{array} \right],b = \left[ \begin{array}{l} {b_1}\\ \vdots \\ {b_n} \end{array} \right] $$
will be presented. Here A is a given n × n matrix, and b is a given vector. We assume in addition that A and b are real, although this restriction is inessential in most of the methods. In contrast to the iterative methods (Chapter 8), the direct methods discussed here produce the solution in finitely many steps, assuming computations without roundoff errors.

Keywords

Simplex Method Triangular Matrix Feasible Point Positive Definite Matrix Gaussian Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 4

  1. Bartels, R. H.: A stabilization of the simplex method. Numer. Math. 16, 414–434 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bauer, F. L.: Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme. In: ZAMM 46, 409–421 (1966).zbMATHCrossRefGoogle Scholar
  3. Blum, E., Oettli, W.: Mathematische Optimierung. Berlin, Heidelberg, New York: Springer 1975.CrossRefGoogle Scholar
  4. Collatz, L.: Functional Analysis and Numerical Mathematics. New York: Academic Press 1966.Google Scholar
  5. Daniel, J. W., Gragg, W. B., Kaufman, L., Stewart, G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 772–795 (1976).MathSciNetzbMATHGoogle Scholar
  6. Dantzig, G. B.: Linear Programming and Extensions. Princeton, N. J.: Princeton University Press 1963.zbMATHGoogle Scholar
  7. Dongarra, J. J., Bunch, J. R., Moler, C. B., Stewart, G. W.: unpack User’s Guide. Philadelphia, Pa.: SIAM 1979.Google Scholar
  8. Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N. J.: Prentice-Hall 1967.zbMATHGoogle Scholar
  9. Gass, S. T.: Linear Programming. 3rd edition. New York: McGraw-Hill 1969.Google Scholar
  10. Gill, P. E., Golub, G. H., Murray, W., Saunders, M. A.: Methods for modifying matrix factorizations. Math. Comp. 28, 505–535 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  11. Grossmann, W.: Grundzüge der Ausgleichsrechnung. 3. Aufl. Berlin, Heidelberg, New York: Springer 1969.CrossRefGoogle Scholar
  12. Guest, P. G.: Numerical Methods of Curve Fitting. Cambridge: University Press 1961.zbMATHGoogle Scholar
  13. Hadley, G.: Linear Programming. Reading, Mass.: Addison-Wesley 1962.zbMATHGoogle Scholar
  14. Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell 1964.zbMATHGoogle Scholar
  15. Lawson, C. L., Hanson, H. J.: Solving Least Squares Problems. Englewood Cliffs, N. J.: Prentice-Hall 1974.zbMATHGoogle Scholar
  16. Murty, K. G.: Linear and Combinatorial Programming. New York: Wiley 1976.zbMATHGoogle Scholar
  17. Prager, W., Oettli, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides. Num. Math. 6, 405–409 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  18. Sautter, W.: Dissertation TU München 1971.Google Scholar
  19. Schwarz, H. R., Rutischauser, H., Stiefel, E.: Numerik symmetrischer Matrizen. Leitfäden der angewandten Mathematik, Bd. 11. Stuttgart: Teubner 1968.zbMATHGoogle Scholar
  20. Seber, G. A. F.: Linear Regression Analysis. New York: Wiley 1977.Google Scholar
  21. Stewart, G. W.: Introduction to Matrix Computations. New York: Academic Press 1973.zbMATHGoogle Scholar
  22. Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford: Clarendon Press 1965.Google Scholar
  23. Wilkinson, J. H., Reinsch, Ch.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer 1971.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. Stoer
    • 1
  • R. Bulirsch
    • 2
  1. 1.Institut für Angewandte MathematikUniversität Würzburg am HublandWürzburgFederal Republic of Germany
  2. 2.Institut für MathematikTechnische UniversitätMünchenFederal Republic of Germany

Personalised recommendations