Abstract
In this chapter direct methods for solving systems of linear equations will be presented. Here A is a given n × n matrix, and b is a given vector. We assume in addition that A and b are real, although this restriction is inessential in most of the methods. In contrast to the iterative methods (Chapter 8), the direct methods discussed here produce the solution in finitely many steps, assuming computations without roundoff errors.
$$ Ax = b,A = \left[ \begin{array}{l}
{a_{11}}...{a_{1n}}\\
\vdots \quad \quad \vdots \\
{a_{n1}}...
\end{array} \right],b = \left[ \begin{array}{l}
{b_1}\\
\vdots \\
{b_n}
\end{array} \right] $$
Keywords
Simplex Method Triangular Matrix Feasible Point Positive Definite Matrix Gaussian Elimination
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References for Chapter 4
- Bartels, R. H.: A stabilization of the simplex method. Numer. Math. 16, 414–434 (1971).MathSciNetMATHCrossRefGoogle Scholar
- Bauer, F. L.: Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme. In: ZAMM 46, 409–421 (1966).MATHCrossRefGoogle Scholar
- Blum, E., Oettli, W.: Mathematische Optimierung. Berlin, Heidelberg, New York: Springer 1975.CrossRefGoogle Scholar
- Collatz, L.: Functional Analysis and Numerical Mathematics. New York: Academic Press 1966.Google Scholar
- Daniel, J. W., Gragg, W. B., Kaufman, L., Stewart, G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 772–795 (1976).MathSciNetMATHGoogle Scholar
- Dantzig, G. B.: Linear Programming and Extensions. Princeton, N. J.: Princeton University Press 1963.MATHGoogle Scholar
- Dongarra, J. J., Bunch, J. R., Moler, C. B., Stewart, G. W.: unpack User’s Guide. Philadelphia, Pa.: SIAM 1979.Google Scholar
- Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N. J.: Prentice-Hall 1967.MATHGoogle Scholar
- Gass, S. T.: Linear Programming. 3rd edition. New York: McGraw-Hill 1969.Google Scholar
- Gill, P. E., Golub, G. H., Murray, W., Saunders, M. A.: Methods for modifying matrix factorizations. Math. Comp. 28, 505–535 (1974).MathSciNetMATHCrossRefGoogle Scholar
- Grossmann, W.: Grundzüge der Ausgleichsrechnung. 3. Aufl. Berlin, Heidelberg, New York: Springer 1969.CrossRefGoogle Scholar
- Guest, P. G.: Numerical Methods of Curve Fitting. Cambridge: University Press 1961.MATHGoogle Scholar
- Hadley, G.: Linear Programming. Reading, Mass.: Addison-Wesley 1962.MATHGoogle Scholar
- Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell 1964.MATHGoogle Scholar
- Lawson, C. L., Hanson, H. J.: Solving Least Squares Problems. Englewood Cliffs, N. J.: Prentice-Hall 1974.MATHGoogle Scholar
- Murty, K. G.: Linear and Combinatorial Programming. New York: Wiley 1976.MATHGoogle Scholar
- Prager, W., Oettli, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides. Num. Math. 6, 405–409 (1964).MathSciNetMATHCrossRefGoogle Scholar
- Sautter, W.: Dissertation TU München 1971.Google Scholar
- Schwarz, H. R., Rutischauser, H., Stiefel, E.: Numerik symmetrischer Matrizen. Leitfäden der angewandten Mathematik, Bd. 11. Stuttgart: Teubner 1968.MATHGoogle Scholar
- Seber, G. A. F.: Linear Regression Analysis. New York: Wiley 1977.Google Scholar
- Stewart, G. W.: Introduction to Matrix Computations. New York: Academic Press 1973.MATHGoogle Scholar
- Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis. Oxford: Clarendon Press 1965.Google Scholar
- Wilkinson, J. H., Reinsch, Ch.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer 1971.MATHGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1980