Assessing the accuracy of the results of calculations is a paramount goal in numerical analysis. One distinguishes several kinds of errors which may limit this accuracy:
  1. (1)

    errors in the input data,

  2. (2)

    roundoff errors,

  3. (3)

    approximation errors.



Error Analysis Arithmetic Operation Digital Computer Amplification Factor Interval Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 1

  1. Ashenhurst, R. L., Metropolis, N.: Unnormalized floating-point arithmetic. J. Assoc. Comput. Mach. 6, 415–428, 1959.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bauer, F. L.: Computational graphs and rounding error. SIAM J. Numer. Anal. 11, 87–96, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bauer, F. L., Heinhold, J., Samelson, K., Sauer, R.: Moderne Rechenanlagen. Stuttgart: Teubner 1965.zbMATHGoogle Scholar
  4. Henrici, P.: Error Propagation for Difference Methods. New York: Wiley 1963.zbMATHGoogle Scholar
  5. Knuth, D. E.: The Art of Computer Programming. Vol. 2. Seminumerical Algorithms. Reading, Mass.: Addison-Wesley 1969.zbMATHGoogle Scholar
  6. Kulisch, U.: Grundzüge der Intervallrechnung. In: D. Laugwitz: Überblicke Mathematik 2, 51–98. Mannheim: Bibliographisches Institut 1969.Google Scholar
  7. Moore, R. E.: Interval Analysis. Englewood Cliffs, N.J.: Prentice-Hall 1966.zbMATHGoogle Scholar
  8. Neumann, J. von, Goldstein, H. H.: Numerical inverting of matrices. Bull. Amer. Math. Soc. 53, 1021–1099, 1947.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Rademacher, H. A.: On the accumulation of errors in processes of integration on high-speed calculating machines. Proceedings of a symposium on large-scale digital calculating machinery. Annals Comput. Labor. Harvard Univ. 16, 176–185, 1948.Google Scholar
  10. Scarborough, J. B.: Numerical Mathematical Analysis. Baltimore: Johns Hopkins Press 1930, 2nd edition 1950.Google Scholar
  11. Sterbenz, P. H.: Floating Point Computation. Englewood Cliffs, N.J.: Prentice-Hall 1974.Google Scholar
  12. Wilkinson, J. H.: Error analysis of floating-point computation. Numer. Math. 2, 219–340, 1960.MathSciNetCrossRefGoogle Scholar
  13. Wilkinson, J. H.: Rounding Errors in Algebraic Processes. New York: Wiley 1963.zbMATHGoogle Scholar
  14. Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Oxford: Clarendon Press 1965.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • J. Stoer
    • 1
  • R. Bulirsch
    • 2
  1. 1.Institut für Angewandte MathematikUniversität Würzburg am HublandWürzburgFederal Republic of Germany
  2. 2.Institut für MathematikTechnische UniversitätMünchenFederal Republic of Germany

Personalised recommendations