Elemental Analysis Using Inner-Shell Excitations: A Microanalytical Technique for Materials Characterization

  • Dennis M. Maher


Experiments based on transmission electron microscopy play an extremely important role in materials characterization and diagnostics. The high resolution which can be achieved by modern commercial instruments is being used routinely to derive structural and crystallographic information from both the image and diffraction pattern. In materials diagnostics, these two capabilities are enhanced greatly by the ability to obtain direct elemental information at a comparable spatial resolution (i.e. ≲ 10 nm) and thereby place this elemental information in the context of the microstructure and micro-crystallography of the specimen. This combination of techniques, in part, has been the goal of analytical electron microscopy. The principle of microarea analyses is to probe a small volume of a specimen and to detect the many signals which are generated as a result of the interaction between the incident-electron beam and this volume. The desired elemental information is carried either: i) in the secondary emission of X-rays or Auger electrons which occur during the decay of the primary excitation process; or ii) in the transmitted-electron energy-loss spectrum which reflects the primary excitations (i.e. plasmons, valence-shell electrons and inner-shell electrons). Since the preliminary work of WITTRY, FERRIER and COSSLETT (1969) was reported, there has been considerable interest in the use of inner-shell excitations for direct elemental analysis and it is this aspect of electron energy-loss spectroscopy that will be detailed here. Those interested in the analysis techniques and materials applications of plasmon excitations should see a recent review by WILLIAMS and EDINGTON (1976).


Energy Window Partial Cross Section Amorphous Carbon Film Edge Profile Edge Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amelinckx, S., 1964, Direct Observation of Dislocations ( London: Academic Press ) p. 193.Google Scholar
  2. Bethe, H., 1930, Ann. Phys., 5, 325.CrossRefGoogle Scholar
  3. Colliex, C., Cosslet, V. E., Leapman, R. D. and Trebbia, P., 1976, Ultra-microscopy, 1, 301.CrossRefGoogle Scholar
  4. Egerton, R. F., 1979, Ultramicroscopy (in press). Egerton, R. F., 1978a, Ultramicroscopy, 3, 243.Google Scholar
  5. Egerton, R. F., 1978b, Ultramicroscopy, 3, 39.CrossRefGoogle Scholar
  6. Egerton, R. F. and Joy, D. C., 1977, Proc. 35th Ann. Meeting EMSA, ( Baton Rouge: Claitors Press ), p. 252.Google Scholar
  7. Egerton, R. F., Rossouw, C. J. and Whelan, M. J., 1976 Developments in Electron Microscopy and Analysis, J. Venables ed. (Landon: Academic Press ), p. 129.Google Scholar
  8. Fraser, H. L., 1978a, Proc. 9th Int. Congress on Electron Microscopy, (Toronto: Imperial Press), 1, p. 552.Google Scholar
  9. Fraser, H. L., 1978b, Proc. 11th Ann. SEM Symposium (Chicago: SEM, Inc.), 1, p. 627.Google Scholar
  10. Inokuti, M., 1971, Rev. Mod. Phys. 43, 297.CrossRefGoogle Scholar
  11. Isaacson, M., 1978, Proc. 11th Ann. SEM Symposium ( Chicago: SEM, Inc. ), 1, 763.Google Scholar
  12. Isaacson, M. and Johnson, D., 1975, Ultramicroscopy, 1, 33.CrossRefGoogle Scholar
  13. Jeanguillaume, C., Trebbia, P. and Colliex, C., 1978, Ultramicroscopy, 3, 237.CrossRefGoogle Scholar
  14. Joy, D. C., 1979, this book.Google Scholar
  15. Joy, D. C. and Maher, D. M., 1978a, J. of Microscopy, 114, 117.CrossRefGoogle Scholar
  16. Joy, D. C. and Maher, D. M., 1978b, Ultramicroscopy, 3, 69.CrossRefGoogle Scholar
  17. Joy, D. C. and Maher, D. M., 1977, Developments in Electron Microscopy and Analysis (Briston: The Institute of Physics), Ser. No. 36, p. 357.Google Scholar
  18. Joy, D. C., Egerton, R. F., and Maher, D. M., 1979, Proc. 12th Ann. SEM Symposium (Chicago: SEM, Inc.) in press.Google Scholar
  19. Jouffrey, B., Short Wavelength Microscopy (New York: N. Y. Acad. of Sci.) p. 29.Google Scholar
  20. Larkins, F. P., 1977, Atomic Data and Nuclear Data Tables, 20, 312.CrossRefGoogle Scholar
  21. Leapman, R. D., 1979, Ultramicroscopy, 3, 413.CrossRefGoogle Scholar
  22. Leapman, R. D. and Cosslett, V. E., 1977, Vacuum, 26, 423.CrossRefGoogle Scholar
  23. Leapman, R. D. and Whelan, M. J., 1977, Developments in Electron Micro- scopy and Analysis (Briston: The Institute of Physics), Ser. No. 36, p. 361.Google Scholar
  24. Leapman, R. D., Rez. P. and Mayers, D., 1978, Proc. 9th Int. Cong. on Electron Microscopy (Toronto: Imperial Press), 1, p. 526.Google Scholar
  25. Leapman, R. D., Sanderson, S. J. and Whelan, M. J., 1978, Metal Sci., 12, 215.Google Scholar
  26. Maher, D. M., Joy, D. C. and Mochel, P., 1978, Proc. 9th Int. Congress on Electron Microscopy (Toronto: Imperial Press), 1, p. 528.Google Scholar
  27. Maher, D. M., Joy, D. C., Egerton, R. F., and Mochel, P., 1979, J. of Appl. Phys. (in press).Google Scholar
  28. Manson, S. T., 1972, Phys. Rev., 16, 1013.Google Scholar
  29. Powell, C. J., 1976, Rev. Mod. Phys., 48, 33.CrossRefGoogle Scholar
  30. Silcox, J., 1979, this book.Google Scholar
  31. Williams, D. B. and Edington, J. W., 1976, J. of Microscopy, 108, 113.CrossRefGoogle Scholar
  32. Willson, C. J., Batson, P. E., Craven, A. J. and Brown, L. M., 1977, Developments in Electron Microscopy and Analysis (Bristol: The Institute of Physics) Ser. No. 36, p. 365.Google Scholar
  33. Wittry, D. B., Ferrier, R. P. and Cosslett, V. E., 1969, Brit. J. Appl. Phys., 2, 1967.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Dennis M. Maher
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations