Monte Carlo Simulation in Analytical Electron Microscopy

  • David F. Kyser


Spatial resolution in Analytical Electron Microscopy (AEM) is ultimately limited by electron scattering within the foil target. The degree of electron scattering is determined by experimental variables such as incident beam voltage, foil thickness, foil density, and tilt angle of the foil with respect to the incident electron beam. In order to predict the optimum experimental conditions to achieve a desired resolution, we must have a reliable theoretical model for calculating the effects of these experimental parameters on spatial resolution. One model, based on a single scattering event at the middle of the foil, has been proposed by GOLDSTEIN et al. (1977) and some typical results are given in Chapter 3 of this book. Another model, based on Monte Carlo simulation of electron scattering throughout the foil, has been proposed by KYSER and GEISS (1977). Additional results obtained with a sophisticated Monte Carlo model have been given by GEISS and KYSER (1979) and NEWBURY and MYKLEBUST (1979). Finally, FAULKNER et al. (1977) and FAULKNER and NORRGARD (1978) have used a simplified Monte Carlo model to estimate electron scattering and spatial resolution on AEM.


Monte Carlo Simulation Analytical Electron Microscopy Depth Distribution Electron Scattering Monte Carlo Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, M. J. and Seltzer, S. M., National Academy of Sciences-National Research Council, Publ. 1133 ( Washington, D. C., 1964 ), p. 205.Google Scholar
  2. Bishop, H. E., NBS Special Publication 460 ( Washington, D. C., 1975 ), p. 5.Google Scholar
  3. Curgenven, L. and Duncumb, P., Tube Investments Res. Lab. Report 303 ( Essex, England, 1971 ).Google Scholar
  4. Duncumb, P. and Reed, S. J., NBS Special Publication 298 ( Washington, D. C., 1968 ), p. 133.Google Scholar
  5. Faulkner, R. G., Hopkins, T. C., and Norrgard, K., X-Ray Spect. 6, p. 73 (1977).CrossRefGoogle Scholar
  6. Faulkner, R. G. and Norrgard, K., X-Ray Spect. 7, p. 184 (1978).CrossRefGoogle Scholar
  7. Geiss, R. H. and Huang, T. C., X-Ray Spect. 4, p. 196 (1975).Google Scholar
  8. Geiss, R. H. and Kyser, D. F., Ultramicroscopy 3, p. 397 (1979).Google Scholar
  9. Goldstein, J. I., Costley, J. L., Lorimer, G. W., and Reed, S. J., SEM/1977/I, p. 315 (1977).Google Scholar
  10. Goldstein, J. I. and Williams, D. B., SEM/1978/I, p. 427 (1978).Google Scholar
  11. Hammersley, J. M., and Handscomb, D. C., Monte Carlo Methods (Methuen and Co. Ltd., London, 1964 ).Google Scholar
  12. Henoc, J. and Maurice, F., C.E.N.S. Report CEA-R-4615 (French Atomic Energy Commission, 1975 ).Google Scholar
  13. Knuth, D. E., The Art of Computer Programming - Seminumerical Algorithums, Vol. 2 (Addison-Wesley Publ. Co., 1969), Ch. 3.Google Scholar
  14. Kramers, H. A., Phil. Mag. 46, p. 836 (1923).Google Scholar
  15. Kyser, D. F. and Murata, K., IBM J. Res. Dev. 18, p. 352 (1974a).Google Scholar
  16. Kyser, D. F. and Murata, K., Proc. 7th Int. Conf. Electron and Ion Beam Science and Technology (The Electrochemical Society, 1974b ), p. 205.Google Scholar
  17. Kyser, D. F., Proc. 11th Annual Conf. of the Microbeam Analysis Society (Miami Beach, 1976 ), p. 28A.Google Scholar
  18. Kyser, D. F. and Geiss, R. H., Proc. 12th Annual Conf. of the Microbeam Analysis Society (Boston, 1977 ), p. 110A.Google Scholar
  19. Murata, K. Matsukawa, T., and Shimizu, R., Jap. J. Appl. Phys. 10, p. 678 (1971).Google Scholar
  20. Murata, K., Matsukawa, T., and Shimizu, R., Proc. 6th Int. Conf. X-Ray Optics and Microanalysis (Univ. of Tokyo Press, 1972 ), p. 105.Google Scholar
  21. Newbury, D. E., and Myklebust, R. L., Ultramicroscopy 3, p. 391 (1979).Google Scholar
  22. Niedrig, H., SEM/1978/I, p. 841 (1978).Google Scholar
  23. Philibert, J. and Tixier, R., Physical Aspects of Electron Microscopy and Microbeam Analysis (Wiley, 1975 ), p. 333.Google Scholar
  24. Powell, C. J., NBS Special Publication 460 ( Washington, D. C., 1975 ), p. 97.Google Scholar
  25. Reed, S. J., Electron Microprobe Analysis (Cambridge Univ. Press, 1975), Ch. 19.Google Scholar
  26. Reuter, W., Kuptsis, J. D., Lurio, A., and Kyser, D. F., J. Phys. D. 11, p. 2633 (1978).CrossRefGoogle Scholar
  27. Reuter, W., Proc. 6th Int. Conf. X-Ray Optics and Microanalysis (Univ. of Tokyo Press, 1972 ), p. 121.Google Scholar
  28. Shimizu, R., Quantitative Analysis With Electron Microprobes and Secon-dary Ion me Mass Spectrotry ( Nuclear Research Institute, Julich, Germany, 1972 ), p. 156.Google Scholar
  29. Shimizu, R., Kataoka, Y., Ikuta, T., Koshikawa, T., and Hashimoto, H., J. Phys. D. 9, p. 101 (1976).CrossRefGoogle Scholar
  30. Workshop Proc. on Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy, ed. by K. F. Heinrich, D. E. Newbury, and H. Yakowitz (Nat. Bur. of Stds., 1975) - NBS Spec. Publ. 460.Google Scholar
  31. Workshop Proc. on Analytical Electron Microscopy (Cornell Univ., 1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • David F. Kyser
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations