Advertisement

The Analysis of Defects Using Computer Simulated Images

  • Peter Humble

Abstract

Most of the other contributions to this workshop consider the analytical use of the electron microscope in a chemical or structural/crystallographic sense. In this section, we consider the analysis of extended defects which are nearly always present in crystalline solids. These defects are those which are visible in conventional transmission electron microscopy as a result of their extended nature or their long range elastic displacement fields, e.g. dislocations, stacking faults, dislocation loops, coherent and semicoherent precipitates, extrinsic grain boundary dislocations,’etc. It is important to note at the outset that the images of such defects are not dependent only on the form of their displacement field, but also on factors such as their geometry or orientation in the crystal. For example, the image of a small dislocation loop depends, among other things, upon the shape and size of the loop, the orientation of the Burgers vector relative to the plane of the loop, and the orientation of the loop with respect to the electron beam. Even for a straight dislocation in an elastically anisotropic crystal, the image depends not only on the Burgers vector and its orientation with respect to the dislocation line, but also on the direction in the crystal of the dislocation line itself. Thus, a total analysis of a defect involves the determination of these other mainly geometric and crystallographic factors in addition to the displacement field.

Keywords

Displacement Field Burger Vector Slip Plane Dislocation Line Dislocation Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bullough, R., Maher, D. M. and Perrin, R. C., 1971, Phys. Stat. Sol. (b), 43, 689.Google Scholar
  2. Cherns, D., 1974, Phil. Mag., 30, 549.CrossRefGoogle Scholar
  3. Clarebrough, L. M. and Forwood, C. T., 1976, Phys. Stat. Sol. (a), 33, 355.Google Scholar
  4. Cooper, W. D., 1977, Ph.D. Dissertation, University of Florida. Degischer, H. P., 1972, Phil. Mag., 26, 1137.Google Scholar
  5. Forwood, C. T. and Humble, P., 1970, Aust. J. Phys., 23, 697. Forwood, C. T. and Humble, P., 1975, Phil. Mag., 31, 1025. Forwood, C. T. and Clarebrough, L. M., 1977, Phil. Mag., 36, 1131.Google Scholar
  6. Häusserman, F., Rühle, M. and Wilkens, M., 1972, Phys. Stat. Sol. (b), 50, 445.Google Scholar
  7. Head, A. K., 1967, Aust. J. Phys., 20, 557. Head, A. K., 1969a, Aust. J. Phys., 22, 43. Head, A. K., 1969b, Aust. J. Phys., 22, 345.Google Scholar
  8. Head, A. K., Loretto, M. H. and Humble, P., 1967a, Phys. Stat. Sol., 20, 505.Google Scholar
  9. Head, A. K., Loretto, M. H. and Humble, P., 1967b, Phys. Stat. Sol., 20, 521.Google Scholar
  10. Howie, A. and Whelan, M. J., 1961, Proc. Roy. Soc., A263, 217. Humble, P., 1968, Phys. Stat. Sol., 30, 183.Google Scholar
  11. Humble, P. and Forwood, C. T., 1975, Phil. Mag., 31, 1011. Huntington, H. B., 1958, Solid State Phys., 7, 213.Google Scholar
  12. Lance, G. N., 1960, Numerical Methods for High Speed Computers (Iliffe) (London).Google Scholar
  13. Maher, D. M., Perrin, R. C. and Bullough, R., 1971, Phys. Stat. Sol. (b), 43, 707.Google Scholar
  14. Melander, A., 1976, Phys. Stat. Sol. (a), 33, 255.Google Scholar
  15. Ohr, S. M., 1976, Phys. Stat. Sol. (a), 38, 553.Google Scholar
  16. Sass, S. L., Mura, T. and Cohen, J. B., 1967, Phil. Mag., 16, 679.CrossRefGoogle Scholar
  17. Spyridelis, J., Delavignette, P. and Amelinckx, S., 1967, Mater. Res. Bull., 2, 615.Google Scholar
  18. Tan, T. Y., Sass, S. L. and Balluffi, R. W., 1975, Phil. Mag., 31, 575.Google Scholar
  19. Thölén, A. R., 1970a, Phil. Mag., 22, 175.Google Scholar
  20. Thölén, A. R., 1970b, Phys. Stat. Sol. (a), 2, 537.Google Scholar
  21. Whelan, M. J. and Hirsch, P. B., 1957a, Phil. Mag., 2, 1121. Google Scholar
  22. Whelan, M. J. and Hirsch, P. B., 1957b, Phil. Mag., 2, 1303.Google Scholar
  23. Wilkens, M. and Rühle, M., 1972, Phys. Stat. Sol., 49, 749.Google Scholar
  24. Yoffe, E. H., 1972, Phil. Mag., 25, 935.Google Scholar

Major References

  1. Head, A. K., P. Humble, L. M. Clarebrough, A. J. Morton and C. T. Forwood, “Computed electron micrographs and defect identification,” North Holland, Amsterdam, 1973.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Peter Humble
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Division of Chemical PhysicsCSIROClaytonAustralia

Personalised recommendations