Microanalysis by Lattice Imaging

  • Robert Sinclair


The resolution of closely spaced lattice fringes (~2Å) is increasingly being used for studying fine-scale phenomena in materials. It is natural, therefore, that lattice imaging should also be employed to obtain information about chemical composition, especially in those circumstances where the method is most powerful, viz. on a highly localised level. In this article the application of fringe imaging is considered for the determination of chemical composition, emphasising procedures for obtaining and interpreting the images in a reliable way and illustrating the situations where such images are beneficial.


Lattice Spacing Objective Lens Fringe Pattern Lattice Image Spherical Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allpress, J.G., and Sanders, J.V., 1972, Electron Microscopy and Struc- ture of Materials ( Berkeley: University of California Press )Google Scholar
  2. Allpress, J. G., and Sanders, J.V., 1973, J. Appl. Crystallogr., 6, 165.Google Scholar
  3. Anderson, J. S., 1977, J. Physique, 38, C7–17.Google Scholar
  4. Amelinckx, S., 1964, The Direct Observation of Dislocations (New York: Academic) p. 194, p. 406.Google Scholar
  5. Bourret, A., DESSEAUX, J., and RENAULT, A. 1977, J. Microsc. Spectrosc. Electron., 2, 467.Google Scholar
  6. Hashimoto, H., Mannami, M., and Naiki, T., 1961, Phil. Trans. Roy. Soc., 253, 459.Google Scholar
  7. Buseck, P.R., and IIJIMA, S., 1974, Am. Mineral., 59, 1.Google Scholar
  8. Buseck, P. R., and IIJIMA, S. 1975, Am. Mineral., 60, 771.Google Scholar
  9. Carlson, A. B., 1968, Communication Systems ( New York: McGraw-Hill ) p. 223.Google Scholar
  10. Clarke, D. R., 1978, Scanning Electron Microscopy/1978/I, edited by O. Johari (SEM Inc.) p. 77.Google Scholar
  11. Cowley, J.M. and Iijima, S., 1972, Z. Naturforsch., 27a, 445.Google Scholar
  12. Cowley, J.M. and Iijima, S., 1977, Physics Today, 30 (3), 32.CrossRefGoogle Scholar
  13. Dowell, W. C. T., 1962, J. Phys. Soc. Japan, 17 Suppl. BII, 175. Dowell, W. C. T., 1963, Optik, 20, 535.Google Scholar
  14. Gronsky, R. G., 1976, Ph.D. Thesis (Berkeley: University of California, LBL 5784 ).Google Scholar
  15. Gronsky, R. G., and Thomas, G., 1977, 35th Ann. Proc. Electron Microsc. Soc. Amer. ( Baton Rouge, Claitor’s ) p. 116.Google Scholar
  16. Hanszen, K-J., and Trepte, L., 1971, Optik, 32, 519Google Scholar
  17. Hashimoto, H., Endoh, H., Tanji, T., Ono, A., and Watanabe, E., 1977, J. Phys. Soc. Japan, 42, 1073.Google Scholar
  18. Hashimote, H., Kumao, A., and Endoh, H., 1978, 9th Int’l. Congr. on Electron Microsc. (Toronto: Microscopical Society of Canada) Vol. 3, p. 244.Google Scholar
  19. Hashimoto, H., Sugimoto, Y., Takai, Y., and Endoh, H., 1978, 9th Int’l Congr. on Electron Microsc. (Toronto: Microscopical Society of Canada) Vol. 1, p. 284.Google Scholar
  20. Hibbs, M.K., Pirout, P., and Sinclair, R., 1979, in preparation.Google Scholar
  21. Hirsch, P. B. Howie, A., Nicholson, R.B., Paschley, D.W., and Whelan, M.J., 1965 Electron Microscopy of Thin Crystals (London: Butter-worths) p. 21, p. 161.Google Scholar
  22. Iijima, S., 1971, J. Appl. Phys., 42, 5891.Google Scholar
  23. Iijima, S., 1973, Acta Cryst., A29, 18.CrossRefGoogle Scholar
  24. Iijima, S., and Allpress, J.G., 1974, Acta Cryst., 22, 29.Google Scholar
  25. Iijima, S., and Buseck, P.R., 1978, Acta Cryst. A34, 709.CrossRefGoogle Scholar
  26. Iijima, S., and Cowley, J.M., 1977, J. Physique, 38, C7–135.Google Scholar
  27. Iijima, S., Kímure, S., and Goto, M., 1973 Acta Cryst., A29, 632.Google Scholar
  28. Iijima, S., Kimura, S., and Goto, M., 1974, Acta Cryst., A30, 251.Google Scholar
  29. Izui, K., Furuno, S., and Otsu, H., 1977, J. Electron Microsc., 26, 129.Google Scholar
  30. Izuí, K., Nishida, T., Furuno, S., Otsu, H., and Kuwabara, S., 1978, 9th Int’l. Congr. on Electron Microsc. (Toronto: Microscopical Society of Canada) Vol. 1, p. 292.Google Scholar
  31. Koo, J.Y., and Thomas, G., 1977, 35th Ann. Proc. Electron Microsc. Soc. Amer. ( Baton Rouge: Claítor’s ) p. 118.Google Scholar
  32. Krívanek, O. L., Isoda, S., and Kobayashi, K., 1977, Phil. Mag., 36, 931.CrossRefGoogle Scholar
  33. Krivanek, O. L., Tsui, D.C., Sheng, T.T., and Kamgar, A., 1978, Physics of Sí09 and its Interfaces ( Yorktown Heights: IBM).Google Scholar
  34. Lynch, D. F., Moodie, A. F., and O’Keefe, M. A., 1973, Acta Cryst., A31 300.Google Scholar
  35. McConnell, J. D. M., Hutchison, J. L., and Anderson, J. S., 1974, Proc. Roy. Soc., A339, 1.Google Scholar
  36. Menter, J. W., 1956, Proc. Roy. Soc. A236, 119.Google Scholar
  37. O’Keefe, M. A., 1973, Acta Cryst., A29, 389.CrossRefGoogle Scholar
  38. O’Keefe, M. A. and Sanders, J. V., 1975, Acta Cryst., A31, 307.Google Scholar
  39. Pearson, W. B., 1958, Handbook of Lattice Spacings of Metals and Alloys (London: Pergamon).Google Scholar
  40. Phillips, V. A., 1973, Acta Met., 21, 219.CrossRefGoogle Scholar
  41. Rez, P. and Krivanek, 0. L., 1978, 9th Int’l. Congr. on Electron Microsc. (Toronto: Microscopical Society of Canada), Vol. 1, p. 288.Google Scholar
  42. Scherzer, 0., 1949, J. Appl. Phys., 20, 20.CrossRefGoogle Scholar
  43. Sinclair, R. and Dutkiewicz, J., 1977, Acta Met., 25, 235.CrossRefGoogle Scholar
  44. Sinclair, R., Gronsky, R., and Thomas, G., 1976, Acta Met., 24, 789.CrossRefGoogle Scholar
  45. Sinclair, R., Schneider, K., and Thomas, G., 1975, Acta Met., 23, 873.CrossRefGoogle Scholar
  46. Sinclair, R. and Thomas, G., 1977, J. Physique, 38, C7–165.Google Scholar
  47. Sinclair, R. and Thomas, G., 1978, Met. Trans., 9A, 373.CrossRefGoogle Scholar
  48. Thomas, G., Glaeser, R. M., Cowley, J. M., and Sinclair, R., 1976 Report of Workshop on High Resolution Electron Microscopy (Berkeley: Lawrence Berlekey Laboratory #106).Google Scholar
  49. Van Lunduyt, J. and Amelinckx, S., 1975, Am. Mineral, 60, 351.Google Scholar
  50. Wu, C. K., Sinclair, R., and Thomas, G., 1978, Met. Trans., 9A, 381.CrossRefGoogle Scholar

Note on Key References

  1. Scherzer (1949) for the influence of spherical aberration and defocus on the relative phase of electron imaging waves.Google Scholar
  2. Menter (1956): The first experimental demonstration of lattice imaging.Google Scholar
  3. Hashimoto et al. (1961) for considerations of electron optical effects on fringe periodicity.Google Scholar
  4. Dowell (1963) for identification of the benefits of tilted illumination, two-beam fringe imaging.Google Scholar
  5. lijima (1971), Cowley and Iijima (1972, 1977) for introduction of the structure imaging method.Google Scholar
  6. Allpress and Sanders (1973): a major review of lattice imaging, from experimental and theoretical points-of-view.Google Scholar
  7. Phillips (1973) for the application and structural interpretation of 2 fringe images with respect to a classic metallurgical problem.Google Scholar
  8. Sinclair and Thomas (1978) for considerations of lattice imaging for compositional microanalysis in general.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Robert Sinclair
    • 1
  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA

Personalised recommendations