Radiation Effects in Analysis of Inorganic Specimens by TEM

  • L. W. Hobbs

Abstract

In the practice of analytical electron microscopy, particularly at near-atomic resolution, one is forced by the exigencies of statistics and the briefness of the encounter between fast electrons and the specimen, to use upwards of 104 electrons per Å2 in order to acquire information about the identity and position of a single atom (see Sec. 17.6). It is not therefore surprising that, in addition to the “elastic” interaction which provides positional information and the “inelastic” interaction which provides chemical identification, there should be the further prospect of a significant perturbation of the atomic structure under analysis. Such perturbations may be generically labelled radiation effects and, where they lead to permanent alterations in atomic structure, can be sensibly termed radiation damage.

Keywords

Radiation Effect Fast Electron Dislocation Loop Displacement Energy Frenkel Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adda, Y., Beyeler, M., and Brébec, G., 1975, Thin Solid Films 25, 107–56.CrossRefGoogle Scholar
  2. Barbu, A. and Martin, G., 1977, Scripta Met. 11, 771–5.CrossRefGoogle Scholar
  3. Barnard, R. S., 1977, Ph.D. Thesis, Case Western Reserve University.Google Scholar
  4. Bethe, H. A., 1933, in Handbuch der Physik, ed. H. Geiger and K. Scheel ( Springer Verlag, Berlin ), Vol. 24, p. 273.Google Scholar
  5. Butler, E. P. and Swann, P. R., 1977, in High Voltage Electron Microscopy 1977, J. Electron Microsc. Suppl. 26, 551–4.Google Scholar
  6. Catlow, C. R. A., Diller, K. M., Hobbs, L. W., and Norgett, M. J., 1979, “Irradiation-Induced Defects in Alkali Halide Crystals,” Phil. Mag. (in press).Google Scholar
  7. Chadderton, L. T., Johnson, E., and Wohlenberg, T., 1975, in Developments in Electron Microscopy and Analysis, ed. J. A. Venables ( Academic Press, London ), pp. 299–302.Google Scholar
  8. Corbett, J. W., 1966, Electron Irradiation Damage in Semiconductors and Metals ( Academic Press, New York).Google Scholar
  9. Corbett, J. W. and Watkins, G. D., 1971, ed. Radiation Effects in Semiconductors ( Gordon and Breach, New York).Google Scholar
  10. Corbett, J. W. and Bourgoin, J. C., 1975, in Point Defects in Solids, ed. J. H. Crawford, Jr., and L. M. Slifkin ( Plenum Press, New York ), Vol. 2, pp. 1–161.CrossRefGoogle Scholar
  11. Cosslett, V. E., Jones, G. L., and Camps, R. A., 1974, in High Voltage Electron Microscopy, ed. P. R. Swann, C. J. Humphreys, and M. J. Goringe ( Academic Press, London ), pp. 147–154.Google Scholar
  12. Dearnaley, G., 1975, Appl. Phys. Lett. 26, 499–501.Google Scholar
  13. Drosd, R., Kosel, T., and Washburn, J., 1978, J. Nucl. Mat. 69 and 70, 804–6.CrossRefGoogle Scholar
  14. English, C. A., Griffiths, B. W., and Venables, J. A., 1973, Acta Electronica 16, 43.Google Scholar
  15. Fisher, S. B., 1970, Radiation Effects 5, 239.CrossRefGoogle Scholar
  16. Friebele, E. J., Griscom, D. L., and Stapelbroek, M., 1979, “Fundamental Defect Centers in Glass: The Peroxy Radical in Irradiated High-Purity Silica,” submitted to Phys. Rev. Letters.Google Scholar
  17. Gale, B. and Hale, K. F., 1961, Brit. J. Appl. Phys. 12, 115Google Scholar
  18. Glaeser, R. M., 1974, in High Voltage Electron Microscopy, ed. P. R. Swann, C. J. Humphreys, and M. J. Goringe ( Academic Press, London ), pp. 370–8.Google Scholar
  19. Glaeser, R. M., 1975, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. B. M. Siegel and D. R. Beaman ( Wiley, New York ), pp. 205–29.Google Scholar
  20. Haine, M., 1961, The Electron Microscope (Spon, London).Google Scholar
  21. Hobbs, L. W., 1972, D. Phil. Thesis, Oxford University. Hobbs, L. W., 1973, J. Physique 34, C9, 227–41.Google Scholar
  22. Hobbs, L. W., Hughes, A. E., and Pooley, D., 1973, Proc. Roy. Soc. A332, 167–85.Google Scholar
  23. Hobbs, L. W., 1975, in Surface and Defect Properties of Solids, ed. M. W. Roberts and J. M. Thomas ( The Chemical Society, London ), Vol. 4, pp. 152–250.CrossRefGoogle Scholar
  24. Hobbs, L. W. and Hughes, A. E., 1975, “Radiation Damage in Diatomic Solids at High Doses,” UKAEA Research Report AERE R-8092.Google Scholar
  25. Hobbs, L. W., 1976, J. Physique 37, C7, 1–26.Google Scholar
  26. Hobbs, L. W., Howitt, D. G., and Mitchell, T. E., 1978, in Electron Diffraction 1927–1977, ed. P. J. Dobson, J. B. Pendry, and C. J. Humphreys (Institute of Physics, London), Conf. Ser. No. 41, pp. 402–10.Google Scholar
  27. Hobbs, L. W., 1979, Ultramicroscopy 3, 381–6.CrossRefGoogle Scholar
  28. Hughes, A. E. and Pooley, D., 1971, J. Phys C 4, 1963–76.CrossRefGoogle Scholar
  29. Hughes, A. E. and Pooley, D., 1975, Real Solids and Radiation ( Wykeham, London).Google Scholar
  30. Inokuti, M., 1971, Rev. Mod. Phys. 43, 297–347.Google Scholar
  31. Inokuti, M., Itikawa, Y., and Turner, J. E., 1978, Rev. Mod. Phys. 50, 23.Google Scholar
  32. Inokuti, M., 1979, Ultramicroscopy 3, 423–7. Isaacson, M., 1977, in Principles and Techniques of Electron Microscopy, Biological Applications, ed. M. A. Hayat ( Van Nostrand Reinhold, New York ), Vol. 7, pp. 1–78.Google Scholar
  33. Isaacson, M., 1979, Proc. Specialist Workshop on Analytical Electron Microscopy, Cornell University, 25–28 July 1978, ed. P. L. Fejes, pp. 73–87.Google Scholar
  34. Itoh, N., 1976, J. Physique 37, C7, 27–37.Google Scholar
  35. Iwanaga, M., Ueyanagi, H., Hosoi, K., Iwasa, N., Oba, K., and Shiratsuki, K., 1968, J. Electron Microsc. Chiba Cy 17, 203–14.Google Scholar
  36. Kabler, M. N. and Williams, R. T., 1978, Phys. Rev. B 18, 1948–60.CrossRefGoogle Scholar
  37. Kawamata, Y. and Hibi, T., 1965, J. Phys. Soc. Japan 20, 242–50.Google Scholar
  38. Kinchin, G. H. and Pease, R. S., 1955, Rept. Prog. Phys. 18, 1.Google Scholar
  39. Kinoshita, C., Mukai, T., and Kitajima, S., 1977, in High Voltage Electron Microscopy 1977, J. Electron Microsc. Suppl. 26, 551–4.Google Scholar
  40. Lam, N. Q. and Rothman, S. J., 1976, in Radiation Damage in Metals, ed. N. L. Peterson and S. M. Harkness (ASM, Metals Park, Ohio ), pp. 125–56.Google Scholar
  41. Lehmann, Chr., 1977, Interaction of Radiation with Solids ( North-Holland, Amsterdam).Google Scholar
  42. Lenz, F., 1954, Z. Naturforsch. 9a, 185.Google Scholar
  43. Makin, M. J., 1971, in Electron Microscopy in Material Science, ed. U. Valdre ( Academic Press, London ), pp. 388–461.Google Scholar
  44. Maydet, S. I. and Russell, K. C., 1977, J. Nucl. Mat. 64, 101–14.Google Scholar
  45. McKinley, W. A. and Feshbach, H., 1948, Phys. Rev. 74, 1759–63.CrossRefGoogle Scholar
  46. Mott, N. F. and Massey, H. S. W., 1965, The Theory of Atomic Collisions ( Clarendon Press, Oxford).Google Scholar
  47. Naguib, H. M. and Kelly, R., 1975, Radiation Effects 25, 1–12.CrossRefGoogle Scholar
  48. Norris, D. I. R., 1975, in Electron Microscopy in Materials Science, ed. E. Ruedl and U. Valdre (Commission of the European Communities, Luxembourg), EUR 5515e, Vol. III, pp. 1099–1144.Google Scholar
  49. Oen, O. S., 1973, “Cross Sections for Atomic Displacements in Solids by Fast Electrons,” Oak Ridge National Laboratory Report ORNL-4897.Google Scholar
  50. Parkinson, G. M., Goringe, M. J., Jones, W., Rees, W., Thomas, J. M., and Williams, J. 0., 1976, in Developments in Electron MicroscopyGoogle Scholar
  51. and Analysis, ed. J. A. Venables (Academic Press, London), pp. 315–18.Google Scholar
  52. Peterson, N. L. and Harkness, S. M., 1976, ed. Radiation Damage in Metals (ASM, Metals Park, Ohio).Google Scholar
  53. Pells, G. P. and Phillips, D. C., 1978, “The Temperature Dependence of the Displacement Threshold Energy of oe-Al203,” UKAEA Research Report AERE-R9138.Google Scholar
  54. Pooley, D., 1966, Proc. Phys. Soc., 89, 723–33.Google Scholar
  55. Pooley, D., 1975, in Radiation Damage Processes in Materials, ed. C. H. S. Dupuy ( Noordhof, Leyden ), pp. 309–23.CrossRefGoogle Scholar
  56. Reimer, L., 1975, in Physical Aspects of Electron Microscopy and Micro-beam Analysis, ed. B. M. Siegel and D. R. Beaman ( Wiley, New York ), pp. 231–45.Google Scholar
  57. Rose, A., 1948, Adv. Electron. 1, 131.Google Scholar
  58. Rothwarf, A., 1973, J. Appl. Phys. 44, 752–6.Google Scholar
  59. Russell, K. C., 1977, in Radiation Effects in Breeder Reactor Structural Materials, ed. M. L. Bleiberg and J. W. Bennett ( AIME, New York ), pp. 821–39.Google Scholar
  60. Saidoh, M. and Townsend, P. D., 1975, Radiation Effects 27, 1–12. Seitz, F. and Koehler, J. S., 1956, Solid State Physics 2, 305.Google Scholar
  61. Slifkin, L. M., 1969, in Solid State Dosimetry, ed. S. Amelinckx ( Gordon and Breach, New York ), pp. 241–60.Google Scholar
  62. Slifkin, L. M., 1975, in Radiation Damage Processes in Materials, ed. C. H. S. Dupuy ( Noordhof, Leyden ), pp. 405–34.CrossRefGoogle Scholar
  63. Sonder, E. and Sibley, W. A., 1972, in Point Defects in Solids, ed. J. H. Crawford, Jr., and L. M. Slifkin ( Plenum Press, New York ), Vol. 1, pp. 201–90.CrossRefGoogle Scholar
  64. Spencer, L. V., 1959, “Energy Dissipation by Fast Electrons,” National Bureau of Standards, Washington, D.C., Monograph 1.Google Scholar
  65. Thomas, L. E., Humphreys, C. J., Duff, W. R., and Grubb, D. T., 1970, Radiation Effects 3, 89.CrossRefGoogle Scholar
  66. Valentine, R. C., 1965, Adv. Opt. Electron Microsc. 1, 180–203.Google Scholar
  67. Venables, J. A., Ball, D. J., and Thomas, G. J., 1968, J. Phys. E 1, 121–6.CrossRefGoogle Scholar
  68. Yada, K. and Hibi, T., 1969, Bull. Res. Inst. Tohoku Univ. 17, 87–100.Google Scholar
  69. Yip, K. L. and Fowler, W. B., 1975, Phys. Rev. B 11, 2327–38.CrossRefGoogle Scholar
  70. Wiedersich, H., Okamoto, P. R., and Lam, N. Q., 1977, in Radiation Effects in Breeder Reactor Structural Materials, ed. M. L. Bleiberg and J. W. Bennett ( AIME, New York ), pp. 801–19.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • L. W. Hobbs
    • 1
  1. 1.Department of Metallurgy and Materials ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations