Abstract

The advantage of forming diffraction patterns in a crystalline material from areas less than 500 nm in diameter, hereafter defined as microdiffraction, can be readily described. The region of interest, such as a small second-phase particle, a particular grain in a fine-grain alloy, or a portion of the strain field surrounding a crystal defect, is small in volume compared to the surrounding matrix. Any means which reduces the total diffraction-forming volume increases the contribution from the region of interest and results in a diffraction pattern with an improved signal-to-noise ratio. Before the introduction of the STEM electron microscope, the lens configuration used for diffraction was such that spherical aberration of the objective lens prevented diffraction patterns from an area less than 500 nm from being formed. This limitation, and the means for bypassing it with microdiffraction, is worth describing in detail.

Keywords

Objective Lens Select Area Diffraction Diffraction Spot Spherical Aberration Main Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpenter,R. W., Bentley, J., Kenik, E. A., 1977, “Scanning Electron Microscopy”, V.I., Om Johari, Ed., IIT Res. Inst., p. 411.Google Scholar
  2. Chevalier, J., P.A.A. and Craven, A. J., 1977, Phil. Mag. 36, p. 67.CrossRefGoogle Scholar
  3. Coates, D. G., 1967, Phil. Mag., 16, p. 1179.CrossRefGoogle Scholar
  4. Cowley, J. M., and Spence, J.C.H., 1978, Ultramicroscopy 3, p. 433.CrossRefGoogle Scholar
  5. Edington, J. W. “Practical Electron Microscopy in Materials Science”, Vol. 1, p. 2.Google Scholar
  6. Forwood, C. T., and Humble, P. 1975, Phil. Mag. 31, p. 1011.CrossRefGoogle Scholar
  7. Fujimoto, F., Komaki, K., and Takagi, S. 1972, Zeit. F. Naturforsch, 27a, p. 441.Google Scholar
  8. Geiss, R. H. 1975, Appl. Phys. Lett. 27, p. 174.CrossRefGoogle Scholar
  9. Geiss, R. H. 1976, “Scanning Electron Microscopy”, Vol. I. Om Johari, Ed., ITT Res. Inst., p. 337.Google Scholar
  10. Grigson, C.W.B., and Tillett, P. I. 1967 Nature, 215, p. 617.CrossRefGoogle Scholar
  11. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. 1965, “Electron Microscopy of Thin Crystals”. ( London: Butterworths ) p. 21.Google Scholar
  12. Krakow, W. 1978, Ultramicroscopy, 3, p. 291.CrossRefGoogle Scholar
  13. Le Poole, J. B. 1947, Philips Tech. Rev., 9, p. 33.Google Scholar
  14. Rackham, G. M. and Steeds, J. W. 1976, “Developments in Electron Microscopy and Analysis”, J. A. Venables, Ed., ( Academic Press ) p. 457.Google Scholar
  15. Riecke, W. D. 1962, Optik, 19, p. 81.Google Scholar
  16. Steeds, J. W., Jones, P. M., Rackham, G. M., and Shannon, M. D. 1976, “Developments in Electron Microscopy and Analysis”, J. A. Venables, Ed., ( Academic Press ) p. 351.Google Scholar
  17. Van Oostrum, K. J., Lienhouts, A., and Jore, A. 1973, Appl. Phys. Lett. 23, p. 283.CrossRefGoogle Scholar
  18. Warren, J. B., and Hren, J. J. 1977, “Scanning Electron Microscopy”, Vol. I, Om Johari, Ed., IIT Res. Inst., p. 379.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • J. B. Warren
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA

Personalised recommendations