Novel Approaches to the Diagnosis and Treatment of Frontal Lobe Dysfunction

  • Elkhonon Goldberg
  • Dmitri Bougakov
Part of the Critical Issues in Neuropsychology book series (CINP)

Abstract

When people talk about the frontal lobes, they often mean prefrontal cortex, which is conventionally composed of Brodmann cytoarchitectonic areas 8, 9, 46, 10, 44, 45, 47, 11, and 12. Other definitions of the prefrontal cortex are based on its subcortical projections: the prefrontal cortex is that which receives projections from dorsomedial thalamic nucleus. Yet other definitions are based on its biochemical projections: the prefrontal cortex is that which receives dopamine (DA) through mesocortical projections.

Keywords

Prefrontal Cortex Frontal Lobe Traumatic Brain Injury Patient Mild Traumatic Brain Injury Frontal Lobe Dysfunction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. M. (1983). Role of amantadine in the management of the neuroleptic-induced extrapyramidal syndromes: Overview and pharmacology. Clinical Neuropharmacology, 6, 64–73.CrossRefGoogle Scholar
  2. Andersson, S., Berstad, J., and Finset A. (1992). Amantadine in cognitive failure in patients with traumatic head injuries. Tdsskrift for den Norske Lageforening, 112, 2070–2072.Google Scholar
  3. Aoki, E, and Sitar, D. (1988). Clinical pharmacokineticsof amantadine hydrochloride. Clinical Pharmacokinetics, 14, 35–51.CrossRefPubMedGoogle Scholar
  4. Barregi, S. R., Porta, M., and Selenati A. (1975). Homovanillic acid and 5-hydroxyindolacetic acid in the CSF of patients after severe head injury. European Neurology, 13, 528–544.CrossRefGoogle Scholar
  5. Barret, K. (1991). Treating organic abulia with bromocriptine and lisuride: four case studies. Journal of Neurology, Neurosurgery and Psychiatry, 54, 718–722.CrossRefGoogle Scholar
  6. Bleiberg, J., Garmo, W. M., and Cederquist, J. (1993). Effects of dexedrine on performance consistency following brain injury. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 6, 245–248.Google Scholar
  7. Brozoski, T. J., Brown, R. M., Rosvold, H. E., Waters, R. N., Cappelletti, J., and Goldman, P. S. (1979). Cognitive deficitGoogle Scholar
  8. caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science, 205,929–932.Google Scholar
  9. Chandler, M. C., Barnhill, J. L., and Gualtieri, C. T. (1988). Amantadine for the agitated head-injury patient. Brain injury, 2 (4), 309–311.CrossRefGoogle Scholar
  10. Catsman-Berrevoets, C. E., and Harskamp, E. (1988). Compulsive pre-sleep behavior and apathy due to bilateral thalamic stroke: Response to bromocriptine. Neurology, 38, 647–649.Google Scholar
  11. Chandler, M. C., Barnhill, J. L., and Gualtieri, C. T. (1988). Amantadine for the agitated head-injury patient. Brain injury, 2 (4), 309–311.CrossRefPubMedGoogle Scholar
  12. Chandra, B. (1978). Treatment of disturbance of consiousness caused by measles encephalitis with levodopa. European Neurology, 17, 265–270.CrossRefPubMedGoogle Scholar
  13. Cope, D. N. (1986). The pharmacology of attention and memory. Journal of Head Trauma Rehabilitation, 1(3), 34–92. Deutsch, G., and Eisenberg, H. M. (1987). Frontal blood flow changes in recovery from coma. Journal of Cerebral Blood Flow and Metabolism, 7, 29–34Google Scholar
  14. Dobkin, B. H., and Hanlon, R. (1993). Dopamine agonist treatment of anterograde amnesia from mediobasal forebrain injury. Annals of Neurology, 33, 313–316.CrossRefPubMedGoogle Scholar
  15. Eames, P. (1989). The use of Sinemet and bromocriptine. Brain injury, 3 (3), 319–320.CrossRefPubMedGoogle Scholar
  16. Evans, R. W, Gualtieri, C. T., and Patterson, D. R. (1987). Treatment of closed head injury with psychostimulant drugs: A controlled case study and appropriate evaluation procedure. Journal of Nervous and Mental Diseases, 175 (2), 106–110.CrossRefGoogle Scholar
  17. Geshwind, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 585–644.CrossRefGoogle Scholar
  18. Gianutsos, G., Stewart, C., and Dunn, J. P. (1985). Pharmacological changes in dopaminergic systems induced by longterm administration of amantadine. European Journal of Pharmacolology, 110, 357–361.CrossRefGoogle Scholar
  19. Goldberg, E. (1985). Akinesia, tardive dysmentia, and frontal lobe disorder in schizophrenia. Schizophrenia Bulletin, 11, 255–263.CrossRefPubMedGoogle Scholar
  20. Goldberg, E. (1992). Introduction: The frontal lobes in neurological and psychiatric conditions. Neuropsychiatry, Neuropsychology, and Behavioral Neurolology, 5 (4), 231–232.Google Scholar
  21. Goldberg, E., and Bilder, R. M. (1987). The frontal lobes and hierrarchical organization of cognitve control. In E. Perecman (Ed.), The frontal lobes revisited (pp. 159–187 ). New York: IRBN Press.Google Scholar
  22. Goldberg, E., and Costa, L. D. (1986). Qualitative indices in neuropsychological assessment: An extension of Luria’s approach to executive deficit following prefrontal lesions. In I. Grant and K. M. Adams (Eds.), Neuropsychological assessment ofneuropsychiatric disorders (pp. 48–64 ). New York: Oxford University Press.Google Scholar
  23. Goldberg, E., Antin, S. P., Bilder, R. M., Gerstman, L. J., Hughes, J. E. O., and Mattis, S. (1981). Retrograde amnesia:Google Scholar
  24. Possible role of mesencephalic reticular activation in long-term memory. Science, 213,1392–1394.Google Scholar
  25. Goldberg, E., Bilder, R. M., Hughes, J. E. O., Antin, S. P., and Mattis, S. (1989). A reticulo-frontal disconnection syn-Google Scholar
  26. drome. Cortex, 25,687–695.Google Scholar
  27. Goldberg, E., Podell, K., Harper, R., Lovell, M., and Riggio, S. (1994). Cognitive bias, functional cortical geometry, and the frontal lobes: Laterality sex, and handedness. Journal of Cognitive Neuroscience, 6 (3), 276–296.CrossRefGoogle Scholar
  28. Goldberg, E., Kluger, A., Griesing, T., Malta, L., Shapiro, M., and Ferris, S. (1997). Early diagnosis of frontal lobe dementias. Presentation given at the Eighth Congress of the International Psychogeriatric Association. Jerusalem, Israel.Google Scholar
  29. Goldman-Rakic, P. S. (1987). Circuitry of primate prefrontal cortex and representation of behavior by representational memory. In F. Plum (Ed.), Handbook of physiology-The nervous system V (pp. 46–92 ). Betheseda, MD: American Physiological Society.Google Scholar
  30. Gualtieri, C. T., Chandler, M., Coons, T. B., and Brown, L. T. (1989). Amantadine: A new clinical profile for traumatic brain injury. Clinical Neuropharmacology, 12 (4), 258–270.CrossRefPubMedGoogle Scholar
  31. Haig, A. J., and Ruess, J. M. (1990). Recovery from vegetative state of six months’ duration associated with Sinemet (levodopa/carbidopa). Archives of Physical Medicine and Rehabilitation, 71, 1081–1083.PubMedGoogle Scholar
  32. Herrman, E. C., Grabliks, J., and Engle, C. (1960). Antiviral activity of L-adamantamine (amantadine). Proclaims of Society of Experimental Biology and Medicine, 106, 625–630.Google Scholar
  33. Honer, W. G., Prohovnik, I., Smith, G., and Lucas, L. R. (1988). Scopolamine reduces frontal cortexperfusion. Journal of Cerebral Blood Flow and Metabolism, 8, 635–641.CrossRefPubMedGoogle Scholar
  34. Hyyppa, M. T., Langvik, V, Nieminen, V, and Vapalhti, M. (1977). Tryptophan and monoamine metabolites in ventricular cerebrospinal fluid after severe cerbral trauma. Lancet, 1, 1367–1368.CrossRefPubMedGoogle Scholar
  35. Ingvar, D. H. (1976). Functional landscape of the dominant hemisphere. Brain Research, 107, 181–197.CrossRefPubMedGoogle Scholar
  36. Ingvar, D. H., and Franzen, G. (1974). Abnormalities of the cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatrica Scandinavica, 50, 425–462.CrossRefPubMedGoogle Scholar
  37. Interagency Head Injury Task Force Report: National Institute of Neurological Disorders and Stroke (1989). Bethesda, MD, National Institute of Health.Google Scholar
  38. Kimberg, D., D’Esposito, M., and Farah, M. (1994). The effects of bromocriptine, a D-2 receptor agonist, on the cognirive abilities of human subjects with different working memory capacities. Society of Neuroscience Abstracts, 20, 1271.Google Scholar
  39. Kneale, T. A., and Eames, P. (1991). Pharmacology and flesxibility in the rehabilitation of two brain-injured adults. Brain, 5 (3), 327–330.Google Scholar
  40. Kraus, M. F., and Maki, P. M. (1997a). The combined use of amantadine and L-dopa/carbidopa in the treatment of chronic brain injury: Case report. Brain Injury, 11, 455–460.CrossRefPubMedGoogle Scholar
  41. Kraus, M. F., and Maki, P. M. (1997b). Effect of amantadine hydrochloride on symptoms of frontal lobe dysfunction inGoogle Scholar
  42. brain injury: Case studies and review. Journal of Neuropsychology and Clinical Neuroscience, 9, 222–230.Google Scholar
  43. Lal, S., Merbitz, C. P., and Grip, J. C. (1988). Modification of function in head-injured patients with Sinemet. Brain Injury, 2 (3), 225–233.CrossRefPubMedGoogle Scholar
  44. Lipper, S., and Tuchman, M. M. (1976). Treatment of chronic posttraumatic organic brain syndrome with dextroamphetamine: First reported case. Journal of Nervous and Mental Diseases, 162 (5), 366–371.CrossRefGoogle Scholar
  45. Luciana, M., Depue, R., Arbisi, P., and Leon, A. (1992). Facilitation of working memory in humans by a D2 dopamine receptor agonist. Journal of Cognitive Neuroscience, 107, 394–404.Google Scholar
  46. Luria, A. R. (1980). Higher cortical functions in man (2nd ed., pp. 373–417 ). New York: Basic Books.Google Scholar
  47. Masdeu, J. C., Van Heertu, R. L. M., and Abdel-Dayem, H. (1995). Head trauma: Use of SeecT. Journal of Neuroimaging, 5, 53–57Google Scholar
  48. Milner, B. (1982). Some cognitive effects of frontal lesion in man. In D. E. Broadbent and L. Weiskranzt (Eds.), The neuropsychology of cognitive function (pp. 211–226 ). London: The Royal Society.Google Scholar
  49. Minderhoud, J. M., Van Woerkom, T. C. A. M., and VanWeerdon, T. W. (1976). On the nature of the brainstem disorder in sever head injured patients. Acta Neurochirurgica, 34, 23–35.CrossRefPubMedGoogle Scholar
  50. Mohr, E., Fabbrini, G., and Ruggieri, S. (1987). Cognitives concomitants of dopamine system stimulation in parkinsonian patients. Journal of Neurology, Neurosurgery and Psychiatry, 50 (1), 192–196.Google Scholar
  51. Murphy, D. L., Henry, G. M., and Weingartner, H. (1972). Catecholamines and memory: Enhanced verbal learning during L-dopa administration. Psychopharmacologia, 27, 319–326.CrossRefPubMedGoogle Scholar
  52. Nauta, W. J. H. (1971). The problem of the frontal lobe: A reinterpretation. Journal of Psychiatric Research, 8, 167–187.CrossRefPubMedGoogle Scholar
  53. Newmann, R. P., Weingartner, H., and Smallberg, S. A. (1984). Effortfull and automatic memory: Effects of dopamine. Neurology, 34, 805–807.CrossRefGoogle Scholar
  54. Oades, R. D. (1982). Search strategies on a hole-board are impaired in rats with ventral tegmental damage: Animal models for tests of thought disorders. Biological Psychiatry, 2, 243–258.Google Scholar
  55. Podell, K., Lovell, M., Zimmerman, M., and Goldberg, E. (1995). The cognitive bias task and lateralized frontal lobe functions in males. Journal of Neuropsychiany and Clinical Neuroscience, 7, 491–501.Google Scholar
  56. Powell, J. H., Al-Adawi, S., Morgan, J., and Greenwood, R. J. (1996). Motivational deficits after brain injury: Effects of bromocriptine in 11 patients. Journal of Neurology, Neurosurgery and Psychiatry, 60, 416–421.CrossRefGoogle Scholar
  57. Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. K., Pardo, J. V, Fox, P. T., and Petersen, S. E. (1994). Practicerelated changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 8–26.CrossRefPubMedGoogle Scholar
  58. Roberts, G. W, Leigh, P. N., and Weinberger, D. R. (1993a). Neuropsychiatric disorders (pp. 14.1–14.8). London: Wolfe Publishing.Google Scholar
  59. Roberts, G. W, Leigh, P. N., and Weinberger, D. R. (1993b). Neuropsychiatric disorders (pp. 5.1–5. 16 ). London: Wolfe Publishing.Google Scholar
  60. Ross, E. D., and Stewart, R. M. (1981). Akinetic mutism from hypothalamic damage: Successful treatment with dopamine agonists. Neurology, 31, 1435–1439.CrossRefPubMedGoogle Scholar
  61. Schwab, R. S., England, A. C., and Postkanzer, D. C. (1969). Amantadine in the treatment of Parkinson’s disease. Journal of the American Medical Association, 208, 1168–1170.CrossRefPubMedGoogle Scholar
  62. Smith, G. P. (1976). The arousal function of central catecholamine neurons. Annals of New York Academy of Science, 270, 45–55.CrossRefGoogle Scholar
  63. Tucker, D. M., and Williamson, P. A. (1984). Assymetric neural control systems in human self-regulation. Psychological Review, 91, 185–215.CrossRefPubMedGoogle Scholar
  64. Van Reekum, R., Bayley, M., and Garner, S. (1995). N of one 1 study: Amantadine for the amotivational syndrome in a patient with traumatic brain injury. Brain Injury, 9, 49–53.Google Scholar
  65. Van Woerkom, T. C. A. M., Minderhoud, J. M., Gottschal, T., and Nicolai, G. (1982). Neurotransmitters in the treatment of patients with severe head injuries. European Neurolology, 21, 227–234.CrossRefGoogle Scholar
  66. Van Woerkom, T. C. A. M., Teelkan, A. W, and Minderhoud, J. M. (1977). Difference in neurotransmitter metabolism in frontotemporal-lobe contusion and diffuse cerebral contusion. Lancet, 1, 812–813.CrossRefPubMedGoogle Scholar
  67. Vecht, C. J., Van Woerkom, T. C. A. M., Teelkan, A. W, and Minderhoud, J. M. (1975a). 5-Hydroxyindolacetic acid (5-HIAA) levels in the cerbral spinal fluid in consiousness and unconsiousness after head injury. Life Sciences, 16, 1179–1186.Google Scholar
  68. Vecht, C. J., Van Woerkom, T. C. A. M., Teelkan, A. W., and Minderhoud, J. M. (1975b). Homovanillic acid and 5-hydroxyindolacetic acid cerebral spinal fluid levels. Archives of Neurolology, 32, 792–797.CrossRefGoogle Scholar
  69. Weller, M., and Kornhuber, J. (1992). A rationale for NMDA receptor antagonist therapy of the neuroleptic malignant syndrome. Medical Hypotheses, 38, 329–333.CrossRefPubMedGoogle Scholar
  70. Wroblewski, B. A., and Glenn, M. B. (1994). Pharmacological treatment of arousal and cognitive deficits. Journal of Head Trauma Rehabilitation, 9 (3), 19–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Elkhonon Goldberg
    • 1
  • Dmitri Bougakov
    • 2
  1. 1.New York University School of Medicine, and the Fielding InstituteNew YorkUSA
  2. 2.The Graduate School and University CenterCity University of New YorkNew YorkUSA

Personalised recommendations