Skip to main content

Part of the book series: Critical Issues in Neuropsychology ((CINP))

Abstract

Clinical neurologists have long known that some recovery of function after damage to the brain and spinal cord is possible, but the specific mechanisms mediating the process are still not completely understood. Part of the difficulty in defining the mechanisms of functional recovery stems from the fact that there may be multiple pathways leading to recovery. This is because brain and spinal cord injuries at the cellular and morphological level are not the result of a single causative event. Rather, they derive from an initial and relatively rapid biochemical cascade that then produces secondary cellular events leading to further destruction of nerve tissue. Many of the destructive events such as the breakdown of the blood—brain barrier, the excessive release of glutamate and other excitatory amino acids, dramatic changes in the levels of neurotransmitters such as gamma-aminobutyric acid (GABA) and norepinephrine, the production of oxygen free radicals, the release of arachidonic acid, lipid membrane peroxidation, and so forth are at the heart of much of the current research being conducted in university laboratories and pharmaceutical companies.

Function: 1. The action of performing. 2. Activity; the action of performance; the mode of action by which (something) fulfils its purpose. (Oxford Universal Dictionary) 3. An organism’s complex adaptive activity, directed toward the performance of some physiological or psychological task. (Luria, 1966, p. 22)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almli, C. R., and Finger, S. (1988). Toward a definition of recovery. In S. Finger, T. E. LeVere, C. R. Almli, and D. G. Stein (Eds.), Brain injury and recovery: Theoretical and controversial issues (pp. 1–14 ). New York: Academic Press.

    Chapter  Google Scholar 

  • Almli, C. R., and Finger, S. (1992). Brain injury and recovery of function: Theories and mechanisms of functional reorganization. Journal of Head Trauma Rehabilitation, 7, 70–77.

    Article  Google Scholar 

  • Andrews, R. J. (1991). Transhemispheric diaschisis. Stroke, 22, 943–949.

    Article  PubMed  Google Scholar 

  • Bach-y-Rita, P. (1972). Brain mechanisms in sensory substitution. New York: Academic Press.

    Google Scholar 

  • Bach-y-Rita, P. (1990). Brain plasticity as a basis for recovery of function in humans. Neuropsychologia, 28, 547–554.

    Article  PubMed  Google Scholar 

  • Berman, N., and Sterling, P. (1976). Cortical suppression of the retino-collicular pathway in the monocularly deprived cat. Journal of physiology, 255, 263–273.

    PubMed  Google Scholar 

  • Brandenberg, G. A., and Mann, M. D. (1989). Sensory nerve crush and regeneration and the receptive fields and response properties of neurons in the primary somatosensory cerebral cortex of cats. Experimental Neurology, 103, 256–266.

    Article  PubMed  Google Scholar 

  • Chino, Y. M., Kaas, J. H., Smith, E. L. d., Langston, A. L., and Cheng, H. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Research, 32, 789–796.

    Article  PubMed  Google Scholar 

  • Chollet, F., and Weiller, C. (1994). Imaging recovery of function following brain injury. Current Opinion in Neurobiology, 4, 226–230.

    Article  PubMed  Google Scholar 

  • Chollet, E, DiPiero, V., Wise, R. J. S., Brooks, D. J., Dolan, R. J., and Frackowiak, R. S. J. (1991). The functional anatomy of motor recovery after stroke in humans: A study with positron emission tomography. Annals of Neurology, 29, 63–71.

    Article  PubMed  Google Scholar 

  • Chow, K. L. (1968). Visual discriminations after extensive ablation of optic tract and visual cortex in rats. Brain Research, 9, 363–366.

    Article  PubMed  Google Scholar 

  • Cotman, C. W, and Nadler, J. V. (1978). Reactive synaptogenesis in the hippocampus. In C. W. Cotman (Ed.), Neuronal plasticity (pp. 227–271 ). New York: Raven Press.

    Google Scholar 

  • Cotman, C. W, Cummings, B. J., and Pike, C. J. (1993). Molecular cascades in adaptive versus pathological plasticity. In A. Gorio (Ed.), Neuroregeneration (pp. 217–240 ). New York: Raven Press.

    Google Scholar 

  • Cotman, C. W, GĂłmez-Pinilla, E, and Kahle, J. S. (1994). Neural plasticity and regeneration. In G. J. Siegal et al. (Eds.), Basic neurochemistry: Molecular, cellular and medical aspects (5th ed., pp. 607–626 ). New York: Raven Press.

    Google Scholar 

  • Cowey, A., and Stoerig, P. (1989). Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: implications for residual vision. Experimental Brain Research, 75, 631–638.

    Article  Google Scholar 

  • Damasio, H., and Damasio, A. R. (1989). Lesion analysis in neuropsychology. New York: Oxford University Press.

    Google Scholar 

  • Exner, S. (1885). Notiz zu derfrage von der fasvertheilung mehrerer nerven in einem muskel. PjlĂĽger’s Archiv fur die gesante Physiologie, 36, 572–576.

    Article  Google Scholar 

  • Feeney, D. (1996). Pattern of brain damage in a traumatic brain injury model: Noradrenergic pharmacotherapy promotes recovery of function. In J. Toole and D. C. Good (Eds), Imaging in neurologic rehabilitation (pp. 91–124 ). New York: Demos Vermande.

    Google Scholar 

  • Feeney, D., and Baron J-C. (1986). Diaschisis. Stroke, 15, 817–830.

    Article  Google Scholar 

  • Finger, S., and Simons, D. (1976). Effects of serial lesions of somatosensory cortex and further neodecortication on retention of a rough-smooth discrimination in rats. Experimental Brain Research, 25, 183–197.

    Article  Google Scholar 

  • Finger, S., and Stein, D. G. (1982). Brain damage and recovery: Research and clinical applications. New York: Academic Press.

    Google Scholar 

  • Finger, S., LeVere, T. E., Almli, C. R., and Stein, D. G. (Eds.). (1988). Brain injury and recovery: Theoretical and controversial issues. New York: Plenum Press.

    Google Scholar 

  • Glasier, M. M., Janis, L. S., and Stein, D. G. (1993). Persistent deficits in Hebb-Williams Maze performance are shown by rats with unilateral entorhinal cortex lesion. Abstracts of International Behavioral Neuroscience Conference, Washington, D.C.

    Google Scholar 

  • Glassman, R. B., and Smith, A. (1988). Neural space capacity and the concept of diaschisis. In S. Finger et al. (Eds.), Brain injury and recovery: Theoretical and controversial issues (Chapter 4 ). New York: Plenum Press.

    Google Scholar 

  • Globus, M. Y., Busto, R., Martinez, E., Valdes, I., and Dietrich, W. D. (1990). Ischemia induces release of glutamate in regions spared from histopathological damage in the rat. Stroke, 21, 1143–1146.

    Article  Google Scholar 

  • Goldstein, K. (1939). The organism. New York: The American Book Company.

    Google Scholar 

  • Goldstein, L. B., and Davis, J. L. (1988). Physician prescribing patterns following hospital admission for ischemic cerebrovascular disease. Neurology, 38, 1806–1809.

    Article  PubMed  Google Scholar 

  • Grady, M. S., Jane, J. A., and Steward, O. (1989). Synaptic reorganization in the human central nervous system following injury. Journal of Neurosurgery, 71, 534–537.

    Article  PubMed  Google Scholar 

  • Heiss, W. D., Ilsen, H. W, Wagner, R., Pawlik, G., Wienhard, K., and Eriksson, L. (1983). Decreased glucose metabolism in functionally inactivated brain regions in ischemic stroke and its alteration by activating drugs. In J. S. Meyer, H. Lechner, M. Reivich, and E. O. Ott (Eds.), Cerebral vascular disease, (4), (pp. 162–168 ). Amsterdam: International Congress Series, Excerpta Medica.

    Google Scholar 

  • Infeld, B., Davis, S. M., Lichtenstein, M., Mitchell, P. J., and Hopper, J. L. (1995). Crossed cerebellar diaschisis and brain recovery after stroke. Stroke, 26, 90–95.

    Article  PubMed  Google Scholar 

  • Irle, E. (1990). An analysis of the correlation of lesion size, localization and behavioral effects in 283 published studies of cortical and subcortical lesions in old-world monkeys. Brain Research Review, 15, 181–213.

    Article  Google Scholar 

  • Jenkins, W. M., and Merzenich, M. M. (1992). Cortical representational plasticity: Some implications for the bases of recovery from brain damage. In N. von SteinbĂĽchel, D. Y. von Cramon, and E. Pöppel (Eds.), Neuropsychological rehabilitation (pp. 20–35 ). Berlin: Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Jenkins, W. M., Merzenich, M. M., and Recanzone, G. (1990). Neocortical representational dynamics in adult primates: Implications for neuropsychology. Neuropsychologia, 28, 573–584.

    Article  PubMed  Google Scholar 

  • Kasten, E., and Sabel, B. (1995). Visual field enlargement after computer training in brain-damaged patients with homonymous deficits: An open pilot trial. Restorative Neurology and Neuroscience, 8, 113–127.

    PubMed  Google Scholar 

  • Kempinsky, W. H. (1958). Experimental study of distal effects of acute focal injury. Archives of Neurology and Psychiatry, 79, 376–389.

    Article  PubMed  Google Scholar 

  • Kolb, B. (1995). Brain plasticity and behavior. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Kolb, B., and Whishaw, W. (1988). Mass action and equipoteniality reconsidered. In S. Finger et al. (Eds.), Brain injury and recovery: Theoretical and controversial issues (pp. 103–114 ). New York: Plenum Press.

    Google Scholar 

  • Lashley, K. S. (1929). Brain mechanisms and intelligence. Chicago: University of Chicago Press.

    Google Scholar 

  • Lashley, K. S. (1933). Integrative functions of the cerebral cortex. Physiology Review, 13, 1–42.

    Google Scholar 

  • LeVere, T. E. (1988). Neural system imbalances and the consequences of large brain injuries. In S. Finger et al. (Eds.), Brain injury and recovery: Theoretical and controversial issues (pp. 15–41 ). New York: Plenum Press.

    Chapter  Google Scholar 

  • LeVere, N. D., Gray-Silva, S., and LeVere, T. E. (1988). Infant brain injury: The benefit of relocation and the cost of crowding. In S. Finger et al. (Eds.), Brain injury and recovery: Theoretical and controversial issues (pp. 133–150 ). New York: Plenum Press.

    Chapter  Google Scholar 

  • Loesche, J., and Steward, O. (1977). Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: Recovery of alternation performance following unilateral cortex lesions. Brain Research Bulletin, 2, 31–39.

    Article  PubMed  Google Scholar 

  • Luria, A. R. (1966). Higher cortical functions in man ( 2nd ed. ). New York: Basic Books.

    Google Scholar 

  • Merrill, E. G., and Wall, P. D. (1972). Factors forming the edge of a receptive field. The presence of relatively ineffective afferents. Journal of physiology, 226, 825–846.

    PubMed  Google Scholar 

  • Merrill, E. G., and Wall, P. D. (1978). Plasticity of connection in the adult nervous system. In C. W. Cotman (Ed.), Neuronal plasticity (pp. 97–111 ). New York: Raven Press.

    Google Scholar 

  • Merzenich, M. M., Nelson, R. J., Kaas, J. H., Stryker, M. P., Jenkins, W M., Zook, J. M., Cynader, M. S., and Schoppmann A. (1987). Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. Journal of Comparative Neurology, 258, 281–297.

    Article  PubMed  Google Scholar 

  • Meyer, J. S. (1982). Changes in local CBF and lambda values following regional cerebral infarction in the baboon. Advances in Bioscience, 43, 153–165.

    Google Scholar 

  • Meyer, J. S., Obara, K., and Muramatsu, K. (1993). Diaschisis. Neurology Research, 15, 362–366.

    Google Scholar 

  • Meyer, R. L., and Sperry, R. L. (1974). Explanatory models for neuroplasticity in retinotectal connections. In D. G. Stein, J. J. Rosen, and N. Butters (Eds.), Plasticity and recovery of function in the central nervous system (pp. 45–64 ). New York: Academic Press.

    Google Scholar 

  • Milner, B. (1974). Sparing of language functions after early unilateral brain damage. Neuroscience Research Bulletin, 12, 213–217.

    Google Scholar 

  • Norrsell, U. (1988). Arguments against redundant brain structures. In S. Finger et al. (Eds.), Brain injury and recovery: Theoretical and controversial issues (pp. 151–164 ). New York: Plenum Press.

    Chapter  Google Scholar 

  • Nudo, R. J., and Milliken, G. W. (1996). Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology 75, 2144–2149.

    PubMed  Google Scholar 

  • Nudo, R. J., Wise, B. M., SiFuentes, F., and Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272, 1791–1794.

    Article  PubMed  Google Scholar 

  • Ojemann, G. (1992). Localization of language in frontal cortex. Adv. Neurol., 57, 6–36.

    Google Scholar 

  • Payne, B. R., and Cornwell, P. (1994). System-wide repercussions of damage to the immature visual cortex. Trends in Neuroscience, 17, 126–130.

    Article  Google Scholar 

  • Prince, M. (1910). Cerebral localization from the point of view of function and symptoms. Journal of Nervous and Mental Disorders, 37, 337–354.

    Article  Google Scholar 

  • Raisman, G. (1969). Neuronal plasticity in the septal nuclei of the adult rat. Brain Research, 14, 25–48.

    Article  Google Scholar 

  • Ramachandran, V. S., Stewart, M., and Rogers-Ramachandran, D. C. (1992). Perceptual correlates of massive cortical reorganization. Science, 258, 1159–1160.

    Article  PubMed  Google Scholar 

  • Ramirez, J. J. (1997). The functional significance of lesion-induced plasticity of the hippocampal formation. Advances in Neurology, 73, 61–82.

    PubMed  Google Scholar 

  • Ramirez, J. J., and Stein, D. G. (1984). Sparing and recovery of spatial alternation performance after entorhinal cortex lesions in rats. Behavior and Brain Research, 13, 55–61.

    Google Scholar 

  • Rauschecker, J. P. (1995). Compensatory plasticity and sensory substitution in the cerebral cortex. Trends in Neuroscience, 18, 36–43.

    Article  Google Scholar 

  • Riese, W. (1958). The principle of diaschisis. International Record of Medicine, 171, 73–82.

    Google Scholar 

  • Riese, W. (1977). Selected papers on the history of aphasia. In R. Hoops and Y. Lebrun (Eds.), Neurolinguistics, 7, (pp. 123–142 ). Amsterdam: Swets and Zeitlinger.

    Google Scholar 

  • Rose, E D., and Johnson, D. A. (1992). Recovery from brain damage: Reflections and directions. New York: Plenum Press.

    Book  Google Scholar 

  • Sautter, J., and Sabel, B. A. (1993). Recovery of brightness discrimination in adult rats despite progressive loss of retrogradely labeled retinal ganglion cells after controlled optic nerve crush. European Journal of Neuroscience, 5, 680–690.

    Article  PubMed  Google Scholar 

  • Schallert, T., and Jones, T. A. (1993). Exhuberant neuronal growth after brain damage in adult rats: The essential role of behavioral experience. Journal of Neural Transplantation and Plasticity, 4, 193–197.

    Article  PubMed  Google Scholar 

  • Schallert, T., Jones, T., Shapiro, L., Crippens, D., and Fulton, R. (1992). Pharmacologic and anatomic considerations in recovery of function. In S. Hanson and D. M. Tucker (Eds.), Neuropsychological assessment: Physical medicine and rehabilitation: State of the art reviews (Vol. 6, pp. 375–393 ). Philadelphia: Hanley and Belfus.

    Google Scholar 

  • Schneider, G. E., and Jhaveri, S. R. (1974). Neuroanatomical correlates of spared or altered function after brain lesions in newborn hamster. In D. G. Stein, J. J. Rosen, and N. Butters (Eds.), Plasticity and recovery offunction in the central nervous system (pp. 65–110 ). New York: Academic Press.

    Google Scholar 

  • Sprague, J. M. (1966). Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science, 153, 1544–1547.

    Article  PubMed  Google Scholar 

  • Stein, D. G., Brailowsky, S., and Will, B. (1995). Brain repair. New York: Oxford University Press.

    Google Scholar 

  • Steward, O. (1989). Reorganization of neuronal connections following CNS trauma: Principles and experimental paradigms. Journal of Neurotrauma, 6, 99–145.

    Article  PubMed  Google Scholar 

  • Steward, O., and Rubel E. W. (1993). The fate of denervated neurons: Transneuronal degeneration, dendritic atrophy and dendritic remodeling. In A. Gorio (Ed.), Neuroregeneration (pp. 37–60 ). New York: Raven Press.

    Google Scholar 

  • Sur, M., Garraghty, P. E., and Roe, A. W. (1988). Experimentally induced visual projections into auditory thalamus and cortex. Science, 242, 1437–1441.

    Article  PubMed  Google Scholar 

  • Taub, E., Pidikiti, R. D., DeLuca, S. C., and Crago, J. E. (1996). Effects of motor restriction of an unimpaired upper extremity and training on improving functional tasks and altering brain behaviors. In J. Toole and D. C. Good (Eds.), Imaging in neurologic rehabilitation (pp. 133–154 ). New York: Demos Vermande.

    Google Scholar 

  • Teuber, H.-L. (1974). Recovery of functions after lesions in the central nervous system. Neuroscience Research Progress Bulletin, 12, 197–209.

    Google Scholar 

  • Toole, J., and Good, D. C. (1996). Imaging in neurologic rehabilitation. New York: Demos Vermande.

    Google Scholar 

  • Von SteinbĂĽchel, N., von Cramon D. Y., and Pöppel, E. (Eds.). (1992). Neuropsychological rehabilitation. Berlin: Springer-Verlag.

    Google Scholar 

  • Wall, P. D. (1975). Signs of plasticity and reconnection in spinal cord damage. In Outcome of Severe Damage to the Central Nervous System (pp. 35–63). Ciba Foundation Symposium #34 Amsterdam: Elsevier.

    Google Scholar 

  • Wall, P. D., and Egger, M. D. (1971). Formation of new connections in adult rat brains after partial deafferentation. Nature, 232, 542–545.

    Article  PubMed  Google Scholar 

  • Weiller, C., Chollet, E, Friston, K. J., Wise, R. J. S., and Frackowiak, R. S. J. (1992). Functional reorganization of the brain in recovery from straitocapusular infarction in man. Annals of Neurology, 31, 463–472.

    Article  Google Scholar 

  • Weiner, C., Ramsay, S. C., Wise, R. J., Friston, K. J., and Frackowiak, R. S. (1993). Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Annals of Neurology, 33, 181–189.

    Article  Google Scholar 

  • Woods, B. T. (1980). The restricted effects of right hemisphere lesions after age one: Wechsler test data. Neuropsychologia, 18, 65–70.

    Article  PubMed  Google Scholar 

  • Yang, T. T., Galler, C. C., Ramachardran, V. S., Cobb, S., Schwartz, B. J., and Bloom, E. E. (1994). Noninvasive detection of cerebral plasticity in adult human somatosensory cortex. Neuroreport, 5, 701–704.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stein, D.G. (2000). Brain Injury and Theories of Recovery. In: Christensen, AL., Uzzell, B.P. (eds) International Handbook of Neuropsychological Rehabilitation. Critical Issues in Neuropsychology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5569-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5569-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3324-9

  • Online ISBN: 978-1-4757-5569-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics