Adsorption and Wetting from Tunable Polyolefin Mixtures

  • Jacob Klein
  • Frank Scheffold
  • Ullrich Steiner
  • Erika Eiser
  • Andrzej Budkowski
  • Lewis Fetters


Polymer blends and alloys are increasingly used as structural and functional materials with desirable combinations of the different components. Often the nature of the interfaces exposed either at the air surface or at a substrate on which the blend is deposited play an important role in determining the suitability of the alloy used. For example, in controlled drug release it is desirable to be able to modify the permeability of the surface layers in drug-containing polymeric microspheres. On a different level, the surface wettability (by paints, for example) of polyolefin blends used increasingly in the automotive industry is a central determinant of their suitability. At the same time, understanding the nature of surface enrichment and wetting in such polymer-polymer mixtures presents a significant scientific challenge1. Important questions are: what are the factors that control which of the blend components will enrich or wet the surfaces? are the interactions enthalpic (the classical picture) or entropie in origin? can we a priori design molecules that will segregate as desired to one or another interface? what is the nature of the surface fields that control these processes? how fast do wetting layers grow? and so on.


Surface Segregation Surface Field Surface Enrichment Deuterium Label Bare Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For reviews see for example S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz (Academic. New York, 1988), vol. XII, pp.1-218; esp. p.175 ff.; M. Schick, in: Liquids at Interfaces; edited by J. Charvolin, J-F. Joanny, J. Zinn-Justin (North Holland, Amsterdam, 1990 ), pp. 419 - 497.Google Scholar
  2. 2.
    F. Scheffold, E. Eiser, A. Budkowski, U. Steiner, J. Klein, and L. J. Fetters, J. Chem. Phys. 104, 8786 - 8794 (1996).CrossRefGoogle Scholar
  3. 3.
    F. Scheffold, A. Budkowski, U. Steiner, E. Eiser, J. Klein, and L. J. Fetters, J. Chem. Phys. 104, 8795 - 8806 (1996).CrossRefGoogle Scholar
  4. 4.
    U. Steiner, and J. Klein, Phys. Rev. Lett. 77, 2526 - 2529 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    U. K. Chaturvedi, U. Steiner, O. Zak, G. Krausch, G. Schatz, and J. Klein, Appl. Phys. Lett. 56, 1228 (1990); see also R. Payne Nucl. Inst. Meth. B42, 130 (1989)Google Scholar
  6. 6.
    J. Klein, Science 250, 640 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    U. Steiner, J. Klein, E. Eiser, A. Budkowski, and L. J. Fetters, Science 258, 1126 - 1129 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    J. W. Mayer, and E. Rimini, Ion Beam Handbook for Materials Analysis ( Academic Press, New York-San Francisco-London, 1977 ).Google Scholar
  9. 9.
    T. Kerle, A. Losch, F. Scheffold, U. Steiner, G. Schatz, and J. Klein, (To be published).Google Scholar
  10. 10.
    R. Krishnamoorti, W. W. Graessley, N. P. Balsara, and D. J. Lohse, Macromolecules 27, 3073 - 3081 (1994).CrossRefGoogle Scholar
  11. 11.
    D. T. Wu, G. H. Fredrickson, and J.-P. Carton, J. Chem. Phys. 104, 6387 - 6397 (1996).CrossRefGoogle Scholar
  12. 12.
    S. M. Cohen, and M. Muthukumar, J. Chem. Phys 90, 5749 (1989).CrossRefGoogle Scholar
  13. 13.
    G. H. Fredrickson, and J. P. Donley, J.Chem.Phys. 8941 - 8946 (1992).Google Scholar
  14. 14.
    J. P. Donley, and G. H. Fredrickson, J. Polymer Sci.: Pt. B: Polymer Physics 33, 1343 (1995).CrossRefGoogle Scholar
  15. 15.
    K. Binder, Acta Polymer. 46, 204 (1995).CrossRefGoogle Scholar
  16. 16.
    M. A. Carignano, and I. Szleifer, Europhys. Letts. 30, 525 (1995).CrossRefGoogle Scholar
  17. 17.
    A. Yethiraj, S. K. Kumar, A. Hariharan, and K. S. Schweitzer, J. Chem. Phys. 100, 4691 (1994).CrossRefGoogle Scholar
  18. 18.
    A. Yethiraj, Phys. Rev. Lett. 74, 2018 (1995).CrossRefGoogle Scholar
  19. 19.
    R. F. Kayser, M. R. Moldover, and J. W. Schmidt, J. Chem. Soc. Faraday I I 82, 1701 (1986).Google Scholar
  20. 20.
    X.-1. Wu, M. Schlossman, and C. Franck, Phys. Rev. B 33, 402 (1986).CrossRefGoogle Scholar
  21. 21.
    P. Guenon, and D. Beysens, Phys. Rev. Lett. 65, 2406 - 2409 (1990).CrossRefGoogle Scholar
  22. 22.
    P. Wiltzius, and A. Cumming, Phys. Rev. Lett. 66, 3000 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    F. Bruder, and R. Brenn, Phys. Rev. Lett. 69, 624 - 627 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    U. Steiner, J. Klein, and L. J. Fetters, Phys.Rev.Lett. 72, 1498 - 1501 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Lipowsky, and D. A. Huse, Phys. Rev. Lett. 57, 353 - 356 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    K. K. Mon, K. Binder, and D. P. Landau, Phys. Rev. B 35, 3683 (1987).CrossRefGoogle Scholar
  27. 27.
    R. A. L. Jones, L. J. Norton, E. J. Kramer, F. S. Bates, and P. Wiltzius, Phys.Rev.Lett. 66, (1991).Google Scholar
  28. 28.
    G. Krausch, C.-A. Dai, E. J. Kramer, and F. S. Bates, Phys. Rev. Lett. 71, 3669 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jacob Klein
    • 1
  • Frank Scheffold
    • 1
  • Ullrich Steiner
    • 1
  • Erika Eiser
    • 1
  • Andrzej Budkowski
    • 1
  • Lewis Fetters
    • 2
  1. 1.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael
  2. 2.Exxon Research Engineering Co.AnnandaleUSA

Personalised recommendations