Solid State NMR Studies of Polymer Interfaces

  • Nicholas Zumbulyadis
  • Christine J. T. Landry


The interface and interfacial regions in multiphase systems arc of prime importance because they have a direct impact on the physical, mechanical, and chemical properties of the material such as fracture response, impact strength, adhesion, and gas or small molecule permeability. Interfaces are important not just in polymer blends and composites hut also in laminates. multilayer coatings, rubber-toughened materials and semicrystalline polymers. The characterization of the structure and dynamics of interfaces offers numerous challenges. In terms of structure, molecular composition and the distribution of chain ends at the interface are of interest. Questions of dynamics include the kinetics of interface formation during melt processing, melt bonding, solution coating, or latex coalescence. At the molecular level these kinetic processes depend on the dynamics of chain interdiffusion, and physical entanglement dynamics.


Polarization Transfer Dynamic Nuclear Polarization Polymer Interface Symmetric Diblock Copolymer Dynamic Nuclear Polarization Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Pines, M. G. Gibby, and J. S. Waugh, Proton-enhanced NMR of dilute spins in solids, J Chem. Phys. 59: 569 (1973).CrossRefGoogle Scholar
  2. 2.
    S. R. Hartmann and E. L. Hahn, Nuclear double resonance in the rotating frame, Ph_vs. Rev. (1962). Google Scholar
  3. 3.
    J. Schaefer, R. A. McKay, and E. O. Stejskal, Double cross-polarization in solids, J: Magi?. Reson. 34: 443 (1979).Google Scholar
  4. 4.
    W. S. Veeman, NMR investigation of interfaces in polymer composites, Conway. Interfaces 2: 389 (1994).Google Scholar
  5. 5.
    A. W. Overhauser, Polarization of nuclei in metals, Phy.s. Rev. 92: 411 (1953).CrossRefGoogle Scholar
  6. 6.
    A. Abragam and W. G. Proctor, Une nouvelle methode de polarisation dynamique des noyaux atomiques dans les solides, Cornp. Rend. Acad. Sci. 246: 2253 (1958).Google Scholar
  7. 7.
    R. A. Wind, M. J. Duijvenstijn, C. van der Lugt, A. Manenschijn, and J. Vriend, Applications of DNP in 13C NMR in solids, Prog. Noel. Mage. Renon. Spectrosc. 17: 33 (1985).CrossRefGoogle Scholar
  8. 8.
    M. Afeworki, R. A. McKay. and J. Schaefer, DNP enhanced NMR of polymer-blend interfaces, Mater. Sci. Eng. A162: 221 (1993).CrossRefGoogle Scholar
  9. 9.
    D. L. VanderHart and G. B. McFadden, Some perspectives on the iterpretation of proton NMR spin-diffusion data in terms of polymer morphologies, Solid State Noel. Magn. Reson. 7: 45 (1996).CrossRefGoogle Scholar
  10. 10.
    J. Fraissard and T. Ito, 139Xe NMR study of adsorbed xenon: A new method for studying zeolites and metal zeolites, Zeolites 8: 350 (1988).CrossRefGoogle Scholar
  11. 1l.
    J. H. Walton, J. B. Miller, C. M. Roland, and J. B. Nagode, Phase transitions in polymer blends via I - Xe NMR spectroscopy. Macromolecules 26: 452 (1993).CrossRefGoogle Scholar
  12. 12.
    M. Tomaselli, B. H. Meier, P. Robyr, U. W. Suter, and R. R. Ernst, Probing microheterogeneity in polymer systems via two-dimensional I29xenon NMR spy detection; Chem. Phvs. Lett. 205: 145 (1993).CrossRefGoogle Scholar
  13. 13.
    J. R. Havens and D. L. VanderHart, Morphology of poly(ethyleneterephthalate) fibers as studied by multiple pulse proton NMR, Macromolecules 18: 1663 (1985).CrossRefGoogle Scholar
  14. 14.
    D. L. VanderHart and F. Khoury, Quantitative determination of the monoclinic crystalline phase content in polyethylene by 13C NMR, Polymer 25: 1589 (1984).CrossRefGoogle Scholar
  15. 15.
    N. Zumbulyadis and J. M. O’Reilly, Intermolecular proton-deuterium polarization transfer in magic angle spinning NMR spectra: A new spectroscopic tool for interfaces, J. Am. Chem. Soc. 115: 4407 (1993).CrossRefGoogle Scholar
  16. 16.
    N. Zumbulyadis, C. J. T. Landry, and T. E. Long, The determination of polymer miscibility by proton-deuterium CP/MAS NMR spectroscopy. Macromolcctilcc 26: 2647 (1993).CrossRefGoogle Scholar
  17. 17.
    N. Zumbulyadis. A simple model for deuterium cross-polarization magic-angle spinning nuclear magnetic resonance at the interphases of amorphous materials, Solid Stale Nucl. Magn. Re.cou. 5: 3 (1995).CrossRefGoogle Scholar
  18. 18.
    N. Zumbulyadis, M. R. Landry, and T. P. Russell. Interphase mixing in symmetric diblock copolymers determined by proton-deuterium CP/MAS NMR, Macromolecules 29: 2201 (1996).CrossRefGoogle Scholar
  19. 19.
    S. H. Anastasiadis, T. P. Russell, S. K. Satija. and C. F. Majkrzak, The morphology of symmetric diblock copolymers as revealed by neutron reflectivity. J Chem. Pin’s. 92: 5677 (1990).CrossRefGoogle Scholar
  20. 20.
    D. W. Sindorf and G. E. Maciel, 29Si CP/MAS NMR studies of methylchlorosilane reactions on silica gel, J. Arrt. Chem. Soc. 103: 4263 (1981).CrossRefGoogle Scholar
  21. 21.
    N. Zumbulyadis and J. M. O’Reilly, Polarization transfer across interfaces. 1. 29Si cross polarization dynamics at the poly(vinylalcohol)-silica-sol-gel interface, Macromolecules 24: 5294 (1991).CrossRefGoogle Scholar
  22. 22.
    W. Happer, Optical pumping, Rev. Mod. Ph’s. 44: 169 (1972).CrossRefGoogle Scholar
  23. 23.
    M. Gatzke, G. D. Cates. B. Driehuys, D. Fox, W. Happer, and B. Saam, Extraordinarily slow nuclear spin relaxation in frozen laser-polarized I29Xe, Pin ‘s. Rev. Lett. 70: 690 (1993).CrossRefGoogle Scholar
  24. 24.
    H. W. Long, H. C. Gaede, J. Shore, L. Reven, C. R. Bowers, J. Kritzenberger, T. Pietrass, A. Pines, P. Tang, and J.A. Reimer, High-field cross-polarization NMR from laser-polarized xenon to a polymer surface, J. Am. Chem. Soc. 115: 8491 (1993).CrossRefGoogle Scholar
  25. 25.
    O. Gonen. and J. S. Waugh, NMR relaxation mechanisms and line widths in insulators below 1 K. Phrsica A 156: 219 (1989).CrossRefGoogle Scholar
  26. 26.
    J. A. Sidles. Folded Stern-Gerlach experiment as a means of detecting nuclear magnetic resonance in individual nuclei, Phrs. Rev. Lett 68: 1124 (1992).CrossRefGoogle Scholar
  27. 27.
    K. Wago, O. Zuger, R. Kendrick, C. S. Yannoni, and D. Rugar, Low-temperature magnetic resonance force detection, J. Vac. Sci. Technol. B 14:1197 (1996) and references cited therein.Google Scholar
  28. 28.
    M. G. Zysmilich. and A. McDermott, Natural abundance solid-state carbon NMR studies of photosynthetic reaction centers with photoinduced polarization, Proc. Nat. Acad. Sci. USA 93: 6857 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Nicholas Zumbulyadis
    • 1
  • Christine J. T. Landry
    • 1
  1. 1.Imaging Research and Advanced DevelopmentEastman Kodak CompanyRochesterUSA

Personalised recommendations