Real-Space Studies on Interface in a Phase-Separated Polymer Blend by Laser Scanning Confocal Microscopy

  • Hiroshi Jinnai
  • Yukihiro Nishikawa
  • Tsuyoshi Koga
  • Takeji Hashimoto


Laser scanning confocal microscopy was used to study a three dimensional (3d) spatially bicontinuous structure of a phase-separated polymer blend. From the 3d image, both the mean and Gaussian curvatures of interface between two coexisting phases were directly measured. The obtained Gaussian curvature was negative, clearly demonstrating that the interface of the bicontinuous structure is anticlastic, i.e., the principal curvatures have opposite signs. The mean radius of the interface obtained from the curvature measurement was compared with that independently estimated from scattering methods.


Laser Scanning Confocal Microscopy Gaussian Curvature Principal Curvature Spinodal Decomposition Curvature Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Hashimoto, Dynamics in spinodal decomposition of polymer mixtures, Phase Transitions 12: 47 (1988).CrossRefGoogle Scholar
  2. 2.
    T. Hashimoto, Chapter 6 Structure of polymer blends, in: vol. 12 Structure and Properties of Polymers, Materials Science and Technology, E. L. Thomas, ed., VCH, Weinheim (1993).Google Scholar
  3. 3.
    T. Hashimoto, M. Takenaka, and H. Jinnai, Scattering studies of self-assembling processes of polymer blends in spinodal decomposition, J. Appl. Crys. 24: 457 (1991).CrossRefGoogle Scholar
  4. 4.
    F. S. Bates and P. J. Wiltzius, Spinodal decomposition of a symmetric critical mixture of deuterated and protonated polymer, J. Chem. Phys. 91: 3258 (1989).CrossRefGoogle Scholar
  5. 5.
    H. Jinnai, H. Hasegawa, T. Hashimoto, and C. C. Han, Time-resolved small-angle neutron scattering study of spinodal decomposition in deuterated and protonated polybutadiene blends. I. Effect of initial thermal fluctuations, J. Chem. Phys. 99: 4845 (1993).CrossRefGoogle Scholar
  6. 6.
    H. Jinnai, H. Hasegawa, T. Hashimoto, and C. C. Han, Time-resolved small-angle neutron scattering study of spinodal decomposition in deuterated and protonated polybutadiene blends. H. Q-dependence of Onsager kinetic coefficient, J. Chem. Phys. 99: 8154 (1993).CrossRefGoogle Scholar
  7. 7.
    D. D. Lee, and S. H. Chen, Local geometry of surfactant monolayers in a ternary microemulsion system, Phys. Rev. Lett. 73: 106 (1994).PubMedCrossRefGoogle Scholar
  8. 8.
    N. F. Berk, Scattering properties of a model bicontinuous structure with a well defined length scale, Phys. Rev. Lett. 58: 2718 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    S. H. Chen, D. D. Lee, and S. L. Chang, Visualization of 3d microstructure of bicontinuous microemulsions by combined SANS experiments and simulations, J. Mol. Structure 296: 256 (1993).CrossRefGoogle Scholar
  10. 10.
    S. H. Chen, D. D. Lee, K. Kimishima, H. Jinnai, and T. Hashimoto, Measurement of the Gaussian curvature of the surfactant film in an isometric bicontinuous one-phase microemulsions, Phys. Rev. E 54: 6526 (1996).CrossRefGoogle Scholar
  11. 11.
    H. Jinnai, T. Hashimoto, D. D. Lee, and S. H. Chen, Morphological characterization of bicontinuous phase-separated polymer blends and one-phase microemulsions, Macromolecules 30: 130 (1996).CrossRefGoogle Scholar
  12. 12.
    T. Kawakatsu, K. Kawasaki, M. Furusaka, H. Okabayashi, and T. Kanaya, Late stage dynamics of phase separation processes of binary mixtures containing surfactants, J. Chem. Phys. 99: 8200 (1993).CrossRefGoogle Scholar
  13. 13.
    H. Jinnai, Y. Nishikawa, T. Koga, and T. Hashimoto, Direct observation of three-dimensional bicontinuous structure developed via spinodal decomposition, Macromolecules 28: 4782 (1995).CrossRefGoogle Scholar
  14. 14.
    H. Jinnai, T. Koga, Y. Nishikawa, T. Hashimoto, and S. T. Hyde, Curvature determination of spinodal interface in a condensed matter system, Phys. Rev. Lett. in press.Google Scholar
  15. 15.
    R. Huisgen, 1,3-dipolar cylcoadditions past and future, Angew. Chem. Int. Ed. Engl. 2: 565 (1963).CrossRefGoogle Scholar
  16. 16.
    T. Hashimoto, T. Izumitani, and M. Takenaka, Homogenization of immiscible rubber/rubber polymer mixtures by uniaxial compression, Macromolecules 22: 2293 (1989).CrossRefGoogle Scholar
  17. 17.
    J. L. Harris, Contrast variance enhancement: a digital image processing, Applied Optics 16: 1268 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    W. E. Lorensen, H. E. Cline, Marching cubes: a high resolution 3d surface construction algorithm, Computer Graphics SIGGRAPH ‘87 21: 163 (1987).CrossRefGoogle Scholar
  19. 19.
    Y. Nishikawa, H. Jinnai, T. Koga, T. Hashimoto, S. T. Hyde, in preparationGoogle Scholar
  20. 20.
    S. T. Hyde, Microstructure of bicontinuous surfactant aggregates, J. Phys. Chem. 93: 1458 (1989).CrossRefGoogle Scholar
  21. 21.
    D. Hilbert, and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Publishers, New York (1952).Google Scholar
  22. 22.
    Y. Nishikawa, T. Koga, H. Jinnai, T. Hashimoto, and S. T. Hyde, in preparation.Google Scholar
  23. 23.
    M. Takenaka, T. Izumitani, and T. Hashimoto, Slow spinodal decomposition in binary liquid mixtures of polymers. IV Scaled structure factor for later-stage unmixing, J. Chem, Phys. 92: 4566 (1990).CrossRefGoogle Scholar
  24. 24.
    T. Hashimoto, H. Jinnai, H. Hasegawa, and C. C. Han, Late stage spinodal decomposition in binary critical fluids: scaling function obtained over a wide q-space of 4 orders of magnitude, Physica A 204: 261 (1994).Google Scholar
  25. 25.
    J. Langer, R. Lay, S. Maas, W. Gronski, Structure development of a polybutadiene/polyisoprene blend during spinodal decomposition. Comparison between light scattering and optical microscopy, Macromolecules 28: 7010 (1995).CrossRefGoogle Scholar
  26. 26.
    H. Tornita, Sum rules for small angle scattering by random interface, Prog. Theor. Phys. 72: 656 (1984).CrossRefGoogle Scholar
  27. 27.
    G. Porod, 2 General theory, in: Small Angle X-ray Scattering, O. Glatter and O. Kratky, ed., Academic Press, New York (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Hiroshi Jinnai
    • 1
  • Yukihiro Nishikawa
    • 1
  • Tsuyoshi Koga
    • 1
  • Takeji Hashimoto
    • 1
    • 2
  1. 1.Hashimoto Polymer Phasing ProjectERATO, Japan Science and Technology Corporation (JST)Seika, KyotoJapan
  2. 2.Department of Polymer Chemistry, Graduate School of EngineeringKyoto UniversityKyotoJapan

Personalised recommendations