Molecular Design of Reactive Compatibilizers for Polypropylene — Nitrile Butadiene Rubber Blends

  • Betty Wong
  • Warren E. Baker

Abstract

Polypropylene melt grafted with glycidyl methacrylate (and styrene as a comonomer) was synthesized in a batch reactor and used as a reactive compatibilizer in polypropylene-nitrile butadiene rubber blends (NBR contained 7 wt% acrylic acid). The effects of the degree of grafting (DG), molecular weight, and concentration of the PP-g-GMA copolymer on the extent of interpolymer reaction in and impact performance of the blends were examined. The morphology of the PP-NBR blends was unaffected by the molecular weight of the compatibilizer. The impact performance, however, increased rapidly with number average molecular weight up to about 25 000 g/mol, above which the impact strength changed relatively little. The effect of using a larger amount of a low DG copolymer versus a smaller amount of a higher DG copolymer was to increase the impact performance of the blends. The copolymers containing both grafted GMA and styrene were less efficient as blend compatibilizers, possibly due to steric hindrance from the bulky benzene ring. It is also highly probable that these copolymers were lightly crosslinked.

Keywords

Block Copolymer Interfacial Tension Impact Strength Graft Copolymer Diblock Copolymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Kramer, L. J. Norton, C. A. Dai, Y. Sha, and C. Y. Hui, Strengthening of polymer interfaces. Faraday Discuss. 98: 31 (1994).CrossRefGoogle Scholar
  2. 2.
    L. Leibler, Emulsifying effects of block copolymers in incompatible polymer blends, Makromol. Chem., Makromol. Symp. 16: 1 (1988).CrossRefGoogle Scholar
  3. 3.
    Z. G. Wang and S. A. Safran, Equilibrium emulsification of polymer blends by diblock copolymers, J Phys. France 51: 185 (1990).CrossRefGoogle Scholar
  4. 4.
    R. Fayt, R. Jérôme. and Ph. Teyssié, Molecular design of multicomponent polymer systems. Il. emulsifying effect of a poly(hydrogenated butadiene-b-styrene) copolymer in high-density polyethylene/polystyrene blend. J. Polym. Sci., Polym. Phys. Ed. 19:1269 (1981).Google Scholar
  5. 5.
    R. Fayt, R. Jérôme, and Ph. Teyssié, Molecular design of multicomponent polymer systems. IlI. Compara.ive behavior of pure and taper block copolymers in the emulsification low-density polyethylene and polystyrene, J Polym. Sci., Polym. Phys. Ed. 20: 2209 (1982).CrossRefGoogle Scholar
  6. 6.
    R. Fayt, R. Jérôme, and Ph. Teyssié, Characterization and control of interfaces in emulsified incompatible polymer blends, Polym. Eng. Sci. 27: 328 (1987).Google Scholar
  7. 7.
    N. C. Liu. H. Q. Xie, and W. E. Baker. Comparison of the effectiveness of different basic functional groups for the reactive compatibilization of polymer blends, Polymer 34: 4680 (1993).CrossRefGoogle Scholar
  8. 8.
    M. Seadan, D. Graebling, and M. Lambla, Polyolefin-polyamide blends by reactive extrusion, Polym. Networks Blends 3: 115 (1993).Google Scholar
  9. 9.
    S. Wu, Phase structure and adhesion in polymer blends: A criterion for rubber toughening, Polymer 26: 1856 (1985).Google Scholar
  10. l0. S. Wu, Forrthation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects, Polym. Eng. Sci. 27: 335 (1987).Google Scholar
  11. 11.
    R. J. M. Borggreve, R. J. Gaymans, and J. Schuijer, Impact behavior of nylon-rubber blends: 5. Influence of the mechanical properties of the elastomer, Polymer 30: 71 (1989).CrossRefGoogle Scholar
  12. 12.
    R. J. M. Borggreve, R. J. Gaymans, and J. Schuijer. Impact behavior of nylon-rubber blends: 6. Influence of structure on voiding processes; toughening mechanism, Polymer 30: 78 (1989).CrossRefGoogle Scholar
  13. 13.
    W. E. Baker and M. Saleem, Polystyrene-polyethylene melt blends obtained through reactive mixing process, Polym. Eng. Sci. 27: 1634 (1987).CrossRefGoogle Scholar
  14. 14.
    M. Saleem and W. E. Baker, In situ reactive compatibilization in polymer blends: effects of functional group concentrations. J Appl. Polym. Sci. 39:655 (1990).Google Scholar
  15. 15.
    S. Cimmino, F. Coppola, L. D’Orazio, R. Greco, G. Maglio, M. Malinconico, C. Mancarella, Martuscelli, and G. Rogosta, Ternary nylon 6/rubber/ modified rubber blends: Effect of mixing procedure on the morphology, mechanical and impact properties, Polymer 27: 1874 (1986).CrossRefGoogle Scholar
  16. 16.
    C. Creton, E. J. Kramer, C. Y. Hui, and H. R. Brown, Failure mechanisms of polymer interfaces reinforced with block copolymers, Macromol. 25: 3075 (1992).CrossRefGoogle Scholar
  17. 17.
    J. Washiyama, E. J. Kramer, C. F. Constantino, F. Creton, and C. Y. Hui, Chain pullout fracture of polymer interfaces, Macromol. 27: 2019 (1994).CrossRefGoogle Scholar
  18. 18.
    K. H. Dai, J. Washiyama, and E. J. Kramer, Segregation study of a BAB triblock copolymer at the A/B homopolymer interface, Macromol. 27: 4544 (1994).CrossRefGoogle Scholar
  19. 19.
    Z. Xu, K. D. Jandt, E. J. Kramer, B. D. Edgecombe, and J. M. J. Fréchet, Direct observation of a diblock copolymer induced microemulsion at a polymer/polymer interface, J. Polym. Sci., Polym. Phys. Ed. 33: 2351 (1995).CrossRefGoogle Scholar
  20. 20.
    H. R. Brown, K. Char, V. R. Define, and P. F. Green, Effects of a diblock copolymer on adhesion between immiscible polymers. 1. PS-PMMA copolymer between PS and PMMA, Macromol. 26: 4155 (1993).CrossRefGoogle Scholar
  21. 21.
    Y. Lyatskaya, D. Gersappe, N. A. Gross, and A. Balazs, Designing compatibilizers to reduce interfacial tension in polymer blends, J. Phys. Chem., 100: 1449 (1996).CrossRefGoogle Scholar
  22. 22.
    Y. Lyatskaya and A. Balazs, Using copolymer mixtures to compatibilize immiscible homopolymer blends, Macromol., 29: 758 (1996).Google Scholar
  23. 23.
    R. Israels, D. Jasnow, A. Balazs, L. Guo, G. Krausch, J. Sokolov, and M. Rafailovicl,, compatibilizing A/B blends with AB diblock copolymers: Effect of copolymer molecular weight, J Chem. Phys., 102: 8149 (1995).CrossRefGoogle Scholar
  24. 24.
    R. Greco, M. Malinconico, E. Martuscelli, G. Ragosta, and G. Scarinzi, Role of degree of grafting of functionalized ethylene-propylene rubber on the properties of rubber-modified polyamide-6, Polymer 28: 1185 (1987).CrossRefGoogle Scholar
  25. 25.
    T. Nishio, Y. Suzuki, K. Kojima, and M. Kakugo, Morphology of maleic anhydride grafted polypropylene and polyamide alloy produced by reactive processing, J Polym. Eng. 10: 123 (1991).CrossRefGoogle Scholar
  26. 26.
    J. Duvall, C. Sellitti, C. Meyers, A. Hiltner, and E. Baer, Effect of compatibilization on the properties of polypropylene /polyamide-66 (75/25 wt/wt) blends, J. Appl. Polym. Sci. 52: 195 (1994).CrossRefGoogle Scholar
  27. 27.
    J. Duvall, C. Sellitti, C. Meyers, A. Hiltner, and E. Baer, Interfacial effects produced by crystallization of polypropylene with polypropylene-b maleic anhydride compatibilizers, J. Appl. Polym. Sci. 52: 207 (1994).CrossRefGoogle Scholar
  28. 28.
    J. Duvall, C. Sellitti, V. Topolkaraev, C. Meyers, A. Hiltner, and E. Baer, Effect of compatibilization on the properties of polypropylene /polyamide-66 (75/25 wt/wt) blends, Polymer 35: 3949 (1994).CrossRefGoogle Scholar
  29. 29.
    Y. Lee and K. Char, Enhancement of interfacial adhesion between amorphous polyamide and polystyrene by in-situ copolymer formation at the interface, Macromol. 27: 2603 (1994).CrossRefGoogle Scholar
  30. 30.
    K. Char, Y. Lee, B. I. Ahn, J. Kim, and K. U. Kim, Effect of end-functionalized reactive polymers on interfacial adhesion between immiscible polymers, The 11th Annual Meeting of the Polymer Processing Society, Seoul, Korea 265 (1995).Google Scholar
  31. 31.
    Booklet from Elf Atochem North America Inc., “Evaluation of organic peroxides from half-life data” 1985.Google Scholar
  32. 32.
    L. F. Chen, B. Wong, and W. E. Baker, Melt grafting of glycidyl methacrylate onto polypropylene and reactive compatibilization of rubber toughened polypropylene, Polym. Eng. Sci. 36: 1594 (1996).CrossRefGoogle Scholar
  33. 33.
    Y. J. Sun, G. H. Hu, and M. Lambla, Melt free-radical grafting of glycidyl methacrylate onto polypropylene, Angew. Makromol. Chem. 229: 1 (1995).CrossRefGoogle Scholar
  34. 34.
    P. K. Dhal, Spectroscopic Methods for the determination of monomer reactivity ratios in glycidyl methacrylate and styrene copolymerization, J Macromol. Sci., Chem. A23: 181 (1986).Google Scholar
  35. 35.
    B. Wong and W. E. Baker, Melt rheology of graft modified polypropylene, Polymer in press.Google Scholar
  36. 36.
    W. W. Graessley and S. F. Edwards, Entanglement interactions in polymers and the chain contour concentration, Polymer 22: 1329 (1981).CrossRefGoogle Scholar
  37. 37.
    K. Iwata, Local knot model of entangled polymer chains. 2. Theory of probe fluctuations and diffusion coefficient of a single knot J. Phys. Chem. 96: 4111 (1992).CrossRefGoogle Scholar
  38. 37.
    J. B. Wong Shing, W. E. Baker, K. E. Russell, and R. A. Whitney, Effect of Reaction conditions on the grafting of L-(dimethylamino) ethyl methacrylate onto hydrocarbon substrates, J. Polym. Sci., Poly. Chem. 32: 1691 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Betty Wong
    • 1
  • Warren E. Baker
    • 1
  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations